Introduction to
spatial modeling

(a mostly geometrical
presentation)



Alternatives

e X =N e.g. (X;,Xp,..., X,) € X

« Alternatives are infinite set of “policies” in n-
dimensional Euclidean space

 Each dimension is an issue or characteristic of policy:

Economic liberalism Defense spending
Civil liberties Welfare spending
Taxation Trade protection
Redistribution Immigration
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Preferences

* Preferences are satiable
 Each agent has an ideal point
o Utility declines as a distance from ideal point increases

U(X):_Zk:aj‘xj_ej‘ U(X):__iwj(xj_gj)2

Linear Quadratic

] Indexes dimensions
o; = weight on dimension |
0, = ideal policy on dimension |
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One dimension

* Preferences satisfy single-peaked
property
e Black’s median voter theorem applies

VARV
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Two dimensions

 Median voter theorem does not apply

« Can we guarantee transitivity of MR?

e Can it be generalized to 2 dimensions?
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Utility function

Lecture 4

Firoure 5.4

UTILITY §

ldad .

BUTTER

fmmmm s T otTEE e

Spatial Model




Projection onto policy space

U(x,y)

-(x=6,) -(y-6,)

ifference Curves
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Indifferent between x and y
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Projection onto policy space

wPzPXxly
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Effect of weights

Equal weights: Different weights:
Indifference circle Indifference ellipse
0Ly = Oy oy < Oy

(>
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« Midpoint between two alternatives, divides
ideal points
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« Midpoint between two alternatives, divides
agents with opposing preferences

C_X+y
0 X 2 y
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d(6,x) d(6.y) = XPgy
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« Midpoint between two alternatives, divides
ideal points
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Cutting lines

o Set of points equidistant between two alternatives
« Convenient way to determine preferences

All voters with ideal points All voters with ideal points
on this side of line: xPy on this side of line: yPx
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Useful sets

P.(x) = I's preferred-to set of x
Set of policies an individual prefers to x
(Interior of indifference curve through x)

W(x) = Majority rule winset of X
Set of all policies that some majority prefers to x

Finding winsets

Step 1. For each majority coalition, find
Intersection of preferred-to sets

Step 2. Winsetis union of sets in Step 1.
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Finding W(Q)

Set of policies coalition {1,2} prefers to Q
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Finding W(Q)

Set of policies coalition {1,3} prefers to Q
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Finding W(Q)

NOTE: This figure is
Incorrect since P2’s
indifference curve
should go through Q
instead of P3.

Set of policies coalition {2,3} prefers to Q
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Finding W(Q)

NOTE: This figure is
Incorrect since P2’s
indifference curve
should go through Q
instead of P3.

Majority rule winset of Q
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Finding W(Q)

NOTE: This figure is
Incorrect since P2’s
indifference curve
should go through Q
instead of P3.

Unanimity rule winset of Q
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Plott conditions

 The core is non-empty if and only If
ideal points are distributed in a “radially
symmetric” fashion around a policy x*
and x* Is a voter’s ideal point

 Radial symmetry means that pairs of
ideal points form lines that intersect x*
with x* between the pair of ideal points
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Examples

Lecture 4
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Examples: Plott conditions hold

P2 has an empty winset = Condorcet Winner
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Examples: Plott conditions hold

P2 has an empty winset = Condorcet Winner
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Examples: Plott conditions violated

Plott conditions are violated = W(P2) nonempty
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Example: Plott conditions violated

Plott conditions are violated = W(P2) nonempty
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Constructing a preference cycle

Majority {P1, P4, P5} votes for B over A
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Constructing a preference cycle

Majority {P1, P2, P5} votes for C over B
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Constructing a preference cycle

Majority {P2, P3, P4} votes for A over C
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Top cycle set

Alternatives in the top cycle set
— Defeat all alternatives outside the set

— Preference cycles over the alternatives In
the set

Example:
aPb, bPc, cPa, aPd, bPd, cPd
T ={a,b,c}
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McKelvey's Theorem

Given the spatial model, the majority
rule core Is either non-empty or the
top cyclesetis T = X.
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McKelvey’s Theorem (corollary)

Lecture 4

If the Plott conditions are not satisfied,
then for any two points x and vy, there
exists a finite chain of policies
{a,,a,,...,a,} such that xPa,Pa,...Pa Py
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.
F1

]
F3

.
P2

Construct a chain from y to x
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Lecture 4

Note that x iIs majority preferred to y!
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W(X)
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Z, P X
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W(z,)
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Z, Pz, PX
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Z1

yPz,Pz,PX
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z2

=

]
F3

Z1

.
P2

Although x P y, we have the chain: y P z,
Pz, PX
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Implications

* Plott conditions are very rarely satisfied

* |n two dimensions, we can cycle over every
nolicy

 McKelvey’s Theorem does not predict “chaos”

« All preference aggregation rules are problematic,
iIncluding majority rule

* Preference aggregation alone is insufficient to
understand political outcomes
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