
(An Introduction to)

Formal Political Theory

PS 2703, Fall 2007

Professor Jon(athan) Woon



Lecture 1 2

Overview

• What is formal theory?

• Why learn formal theory?

• Learning goals

• Assumptions and expectations
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Logic and Proofs
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Deduction

The process of drawing valid 
conclusions from a set of premises 
using rules of inference.
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Deduction

A process of reasoning in which a 
conclusion follows necessarily from the 
premises presented, so that the 
conclusion cannot be false if the 
premises are true.
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Valid arguments

Example 1

– It will either rain or snow today.

– It’s too warm for snow.

– Therefore, it will rain.

premises

conclusion
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Valid arguments

Example 2

– If today is Monday, then I have to teach 

today.

– Today is Monday.

– Therefore, I have to teach today.
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Valid arguments

Example 3

– I will go to work either today or tomorrow.

– I will stay home today.

– Therefore, I will go to work tomorrow.
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Valid arguments

• Truth of the premises force us to accept 
the truth of the conclusion

• For the purposes of deduction, assume 
premises are true

• Whether premises are actually true in 
the “real world” is an empirical question
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An invalid argument

Either the butler is guilty or the maid is guilty

Either the maid is guilty or the cook is guilty

Therefore, either the butler is guilty or the cook 

is guilty.

What if the maid is guilty?

– Both premises satisfied (i.e. true)

– Conclusion false
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Logic Primer

• Statements

• Connectives

• Conditionals

• Quantifiers

• Equivalences
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Statements

• Represented by letters

• Either true or false, but not both

P = It will rain today

Q = It will snow today

R = Today is Monday

S = I have to teach today

T = I will go to work today

U = I will go to work tomorrow
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Connectives

Logical operators allow us to modify and 

connect statements

“either P or Q, or both”

(disjunction) 
P ∨ Q or

“both P and Q”

(conjunction)
P ∧ Q and

“it is not the case that P”
(negation)

¬ P   (or  ∼ P)not

MeaningSymbol/UsageOperator
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Example 1

It will either rain or snow today

It’s too warm for snow

Therefore, it will rain

P = It will rain today

Q = It will snow today
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Example 1

P ∨ Q 

¬ Q

Therefore, P

P = It will rain today

Q = It will snow today
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Conditional connective

• “If P then Q”

• “P implies Q”

• “P only if Q”

• “Q, if P”

• “P is a sufficient condition for Q”

• “Q is a necessary condition for P”

P ⇒ Q 
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Conditional connective

• “the truth of P guarantees the truth of Q”

• P is the antecedent

• Q is the consequent

P ⇒ Q 

equivalent to ¬ P ∨ Q 
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Example 2

If today is Monday, then I have to teach 

today

Today is Monday

Therefore, I have to teach today

R = Today is Monday

S = I have to teach today
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Example 2

R ⇒ S

R

Therefore, S

R = Today is Monday

S = I have to teach today
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Example 2

¬ R ∨ S

R

Therefore, S

R = Today is Monday

S = I have to teach today
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Example 2

Either today is not Monday or I have to 

teach today

Today is Monday

Therefore, I have to teach today

R = Today is Monday

S = I have to teach today
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Exercise

1) S ⇒ R

R

Therefore: S

2) ¬ S ⇒ ¬ R

R

Therefore: S 

Which of the following is a valid deductive 

argument?

(Hint: Use an equivalence of the form ¬ P ∨ Q)
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Solution to 1

Invalid

S ⇒ R  ≡ ¬ S ∨ R  

R

Therefore: S 

(But ¬ S is also consistent with premises)

Valid deduction: conclusion cannot be false if 

the premises are true.
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Converse

S ⇒ R is the converse of R ⇒ S

They are not equivalent:

R ⇒ S

¬ R ∨ S

S ⇒ R       

¬ S ∨ R    ≠
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Solution to 2

Valid

¬ S ⇒ ¬ R ≡ ¬ (¬ S) ∨ (¬ R) ≡ S ∨ (¬ R)

R

Therefore: S 

(¬ S cannot be true given the premises)

Valid deduction: conclusion cannot be false if 

the premises are true.
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Contrapositive

¬ S ⇒ ¬ R is the contrapositive of R ⇒ S

They are equivalent:

R ⇒ S

¬ R ∨ S

S ∨ ¬ R

¬ S ⇒ ¬ R

¬¬ S ∨ ¬ R

S ∨ ¬ R
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Biconditional connective

“P if and only if Q”

“P is necessary and sufficient for Q”

“P implies Q and Q implies P”

P ⇔ Q 

equivalent to (P ⇒ Q) ∧ (Q ⇒ P)
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Quantifiers

Used for statements involving variables

“for all values of x, P is 
true”

∀ x, PUniversal

“there exists a value of 
x such that P is true”

∃ x s.t. PExistential
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Equivalences

• Double negation law

• Commutative laws

• Associative laws

• Idempotent laws

• Distributive laws

• DeMorgan’s laws

• Conditional laws



Lecture 1 Logic Primer 30

Summary

• Valid arguments: conclusion cannot be 
false if premises are true

• Statements (P, Q,…)

• Connectives (¬, ∧, ∨)

• Conditionals (⇒, ⇔)

• Qualifiers (∃, ∀)

• Equivalences
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Proofs

A proof is a rigorous mathematical 
argument which unequivocally 
demonstrates the truth of a given 
proposition.
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Counterexamples

Used to demonstrate that a (universal) 
statement is false

Conjecture: All formal theorists majored in math

Counterexample: Your instructor majored in 

political science
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Direct proof

Starts with premises and arrives at a 
conclusion directly, usually by way of 
several intermediate deductions

To prove P ⇒ R

– Assume P is true

– Show that P implies Q

– Show that Q implies R
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Example

Prop. If (1) ¬Q ∨ P

(2) ¬R ⇒ ¬P

then Q ⇒ R. 

Proof. First assume Q

(1) implies P must be true

The contrapositive of (2) is P ⇒ R

So it follows that R must be true.
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Example

Prop. If 0 < a < b, then a2 < b2

Proof. Suppose 0 < a < b

Multiplying a < b by a yields a2 < ab

Multiplying a < b by b yields ab < b2

Therefore, a2 < ab < b2

So a2 < b2
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Indirect proof

Prove the contrapositive, which is 
logically equivalent

To prove P ⇒ R, instead prove ¬R ⇒ ¬P

– Assume ¬R 

– Show ¬R ⇒ Q

– Show that Q ⇒ ¬P
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Example

Prop. Suppose a > b. If ac ≤ bc then c ≤ 0.

Proof. We will prove the contrapositive

(if c > 0 then ac > bc)

So suppose c > 0

Multiplying a > b by c gives ac > bc

Therefore, if ac ≤ bc then c ≤ 0
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Proof by contradiction

To prove P is true

– Assume P is false ¬ P

– Deduce a contradiction ¬ P ⇒ P

– Thus, ¬ P is false ¬ ¬ P 

– Therefore, P must be true P
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Example

Prop. If (1) P ∨ Q

(2) ¬(P ∧ R) and 

(3) R

then Q. 

Proof. Suppose the conclusion is false: ¬ Q

(1) implies P must be true

(2) implies R must be false

This contradicts (3)

So the assumption ¬ Q must be false

Therefore, Q must be true
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Named results

Conjectures: Guesses that have not been 

proven

Lemmas: Intermediate results (used 
to prove other results)

Propositions: Main results

Theorem: Really important results

Corollary: Follow closely from main 

results



Lecture 1 Proofs 41

Advice for writing proofs

• Use definitions and equivalences

• Trial and error

• Work through examples

• Make simplifying assumptions to figure out 
the main technique, then prove the original 
result

• Try different types of proofs

• Explain your reasoning clearly and precisely 
(unambiguously)
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Summary

• Proofs demonstrate truth of a result

• Counterexamples show a result is false

• Direct proof

• Indirect proof

• Proof by contradiction
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Sets
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Basics

• A set is a collection of objects (denoted 
by uppercase letters)

• Objects of a set are called elements 
(denoted by lower case letters)

• A set is defined by 

– Enumeration (listing its elements)

– Describing a property unique to the set
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Examples

A = {1,2,3,4,5} 

= {n | n is an integer and 1 ≤ n ≤ 5}

B = {x | x ≥ 0}

C = {Canada, U.S., Mexico} 

= {s | s is a member of NAFTA}
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Notation

“empty set” or “null set”
(contains no elements)

∅

“x is not an element of A”x ∉ A

“x is an element of A”x ∈ A
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Relationships

“A is not equal to B”A ≠ B

“A is not a subset of B”A ⊄ B

“A is equal to B”

A ⊆ B ∧ B ⊆ A

A = B

“A is a proper (or strict) subset of B”

A ⊆ B ∧ A ≠ B

A ⊂ B

“A is a subset of B”

x ∈ A ⇒ x ∈ B

A ⊆ B
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Intersection

“the intersection of A and B”

A ∩ B = {x | x ∈ A ∧ x ∈ B}
A ∩ B

A B

A ∩ B
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Union

“the union of A and B”

A ∪ B = {x | x ∈ A ∨ x ∈ B}
A ∪ B

A B

A ∪ B
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Complement (Subtraction)

“the complement of A relative to B”

B \ A = {x | x ∈ B ∧ x ∉ A}

B \ A

A B

A ∩ B
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Laws for sets

Commutative

A ∩ B  ≡ B ∩ A

A ∪ B  ≡ B ∪ A 

Associative 

(A ∩ B) ∩ C ≡ A ∩ (B ∩ C )

(A ∪ B) ∪ C ≡ A ∪ (B ∪ C )

Distributive

A ∩ (B ∪ C) ≡ (A ∩ B) ∪ (A ∩ C) 

A ∪ (B ∩ C) ≡ (A ∪ B) ∩ (A ∪ C) 
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Cartesian products

The product of two sets is a set of 
ordered pairs:

A × B = {(a,b) | a ∈ A ∧ b ∈ B}
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Coming up

Wednesday: Class starts at 10 am

– 8/29: Rationality and individual choice

Next week

– 9/3: Labor day, no class

– 9/5: Social choice


