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APPENDIX 3
Generalized pool-adjacent-violators Algorithm for the simple ordering case in section 2·5

We present an algorithm for the case T1 ≥st · · · ≥st TG. Let J be a partition of {1, . . . , G}, so that
J = {B1, B2, . . . }. Each member of J is called a block. An optimal solution from Algorithm 1 only
contains blocks with consecutive integers. Let B = {a, . . . , b} (1 ≤ a ≤ b ≤ G), then B− is the block
that contains a− 1 or ∅ if a = 1 and B+ is the block that contains b+ 1 or ∅ if b = G. For a given block
B, SB(x) = exp(q̂B), where q̂B maximizes the log profile likelihood, `B(q;x) =

∑
i∈B `i(q;x). From

Lemma 1,
∑
i∈B d`i(q;x)/dq = −

∑
i∈BKi(q;x). Thus, the maximizer q̂B is the root of the equation∑

i∈BKi(q;x) = 0, provided there is at least one failure in the blockB prior to time t. Otherwise q̂B = 0.

Initialization: J = {{1}, . . . , {G}};
B = {1}, B+ = {2} and B− = ∅;

while B+ 6= ∅ do
if SB(x) ≤ SB+(x) then

J ← J/{B,B+} ∪ {B ∪B+}, i.e., replace B,B+ in J with their union;
B ← B ∪B+ (replace B with B+ ∪B) ;
Set new B+ ;
while B− 6= ∅ and SB(x) ≥ SB−(x) do

J ← J/{B,B−} ∪ {B ∪B−};
B ← B ∪B− Set new B−;

end
else

B− = B, B = B+ and set new B+;
end

end

Algorithm 1: Pool adjacent violators algorithm to calculate the pointwise constrained estimator
under the simple ordering constraint at time x.

Algorithm 1 yields the partition, Ĵ = {B̂1, . . . , B̂r}. If i ∈ B̂j , then Si(x) = SB̂j (x), which is the

pointwise constrained estimator at x. It can be seen that either Ŝg(x) = 1 or Ng(x) = 0 for all g < L and
either Ŝg(x) = 0 or Ng(x) = 0 for all g > U , where L = min{g :Mg(x) > 0} or L = G+ 1 if none
exists, and U = max{g : Ng(x) > 0 and S∗g (x) > 0} or U = 0 if none exists.
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APPENDIX 4
Proof of Theorem 2

Notation and characteristics of the pointwise constrained estimator
Let Jξ(x) be a partition of ξ ⊂ {1, . . . , G} at time x. For example, if ξ = {1, 2, 5}, Jξ(x) might be

{{1}, {2}, {5}} or {{1, 2}, {5}}. Each element B of Jξ(x) is called a block. Let Eξ = {(i, j) : i, j ∈
ξ and (i, j) ∈ E}. The pointwise constrained estimator in ξ subject to constraintsEξ can be represented as
the partition Ĵξ(x) where every group in each block B ∈ Ĵξ(x) has the same estimated survivor function
Ŝξ(B;x) and for B1, B2 ∈ Ĵξ(x), Ŝξ(B1;x) 6= Ŝξ(B2;x) if B1 6= B2. In Lemma 2, we give a charac-
terization of the pointwise constrained estimator. The pointwise constrained estimator may not be unique
after the last observed time for each group. To circumvent this, we set the estimates as low as possible
subject to not violating constraints.

LEMMA 2. A partition Jξ(x) with corresponding estimate Sξ(B;x) is the pointwise constrained esti-
mator subject to the constraints Eξ at time x if and only if

(i) Constraints are not violated. That is, for any i ∈ B1 ⊂ Jξ(x) and j ∈ B2 ⊂ Jξ(x), (j, i) /∈ Eξ when
Sξ(B1;x) > Sξ(B2;x); and

(ii) For any B ∈ Jξ(x), the estimate SB(B;x) = Sξ(B;x) where JB(x) = {B} is the pointwise con-
strained estimator subject to the constraints EB .

Proof. Sufficiency. Since the joint log profile likelihood `ξ(q;x) for populations in ξ as shown in equa-
tion (6) is a separable concave function, if the condition (ii) in Lemma 2 is satisfied, the estimate will be
the pointwise constrained estimator subject to constraints ∪B∈Jξ(x)EB . It follows that if condition (i) in
Lemma 2 is also satisfied, the estimate must be the pointwise constrained estimator subject to constraints
Eξ because ∪B∈Jξ(x)EB ⊂ Eξ and adding more constraints can not increase the likelihood.

Necessity. Obviously condition (i) holds in Lemma 2 if Sξ(B;x) is the pointwise constrained estimator.
If we write down the Karush–Kuhn–Tucker conditions (Kuhn & Tucker, 1951) needed for maximizing
the log profile likelihood subject to the constraints Eξ, the Lagrangian multipliers related to the con-
straint (i, j) ∈ Eξ for any i and j in different block of Jξ(x) will be zero in the solution because these
constraints are inactive in the solution. Thus if we delete these zero valued Lagrangian multipliers, the
remaining Karush–Kuhn–Tucker conditions of the populations in any B ∈ Jξ(x) are exactly the same
as the pointwise constrained estimator subject to the constraints EB . Since the constraints are linear and
the joint log profile likelihood is concave, the Karush–Kuhn–Tucker conditions are also sufficient in our
problem. Thus the condition (ii) in Lemma 2 must also hold. �

Lemma 2 is useful in later proofs because it enables us to consider blocks separately. If B̂ is a block
from the pointwise constrained estimator subject to constraint Eξ for any subpopulation ξ at time x,
Ŝξ(B̂;x) = ŜB̂(B̂;x) will remain the same for any subpopulation ξ for the same block B̂. So we use
Ŝ(B̂;x) as the estimate of the pointwise constrained estimator at time x if B̂ ∈ Ĵξ(x).

We give two more lemmas to characterize the pointwise constrained estimator and Kg(q;x).

LEMMA 3. (a) For any x2 > x1 > 0 and q ≤ 0, Kg(q, x2) ≥ Kg(q, x1);
(b) For any q2 < q1 ≤ 0 and x > 0, Kg(q1, x) ≥ Kg(q2, x), and the equality holds only when
Kg(q1;x) = Kg(q2;x) = −Ng(x).

Proof of Lemma 3(a). We consider separately two cases.
First, if there is no observed event before or at x1, then Kg(q, x1) = −Ng(x1) ≤ −Ng(x2) ≤

Kg(q, x2).
Second, if there is at least one observed event before or at x1, let k̂j be the solution of the equation∑

i:Xgi≤xj

log

(
1− dgi

ngi + k

)
= q,
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then
∑

i:Xgi≤x2

log

(
1− dgi

ngi + k̂2

)
= q =

∑
i:Xgi≤x1

log

(
1− dgi

ngi + k̂1

)
≥

∑
i:Xgi≤x2

log

(
1− dgi

ngi + k̂1

)
.

It follows that k̂1 ≤ k̂2 and hence
Kg(q, x2) = max{k̂2,−Ng(x2)} ≥ max{k̂1,−Ng(x1)} = Kg(q, x1).

Proof of Lemma 3(b). Suppose there is at least one observed event before or at x, and let k̂j be the
solution of the equation ∑

i:Xgi≤x

log

(
1− dgi

ngi + k

)
= qj ,

then k̂2 < k̂1. Since Kg(qj ;x) = max{k̂j ,−Ng(x)}, it can be seen that Kg(q1, x) > Kg(q2, x) except
when both k̂1 and k̂2 are less than or equal to −Ng(x), in which case Kg(q1;x) = Kg(q2;x) = −Ng(x).

If there is no observed event before or at x, then Kg(q1;x) = Kg(q2;x) = −Ng(x) by definition. �

LEMMA 4. For any B̂ ∈ Ĵξ(x), (a)
∑
g∈B̂Kg{log Ŝ(B̂;x);x} ≤ 0, and the strict inequality holds

only when Ŝ(B̂;x) = 1; (b) for any Ŝ(B̂;x) < 1 and B1 ⊂ B̂, the following two conditions will not hold
simultaneously: (i) For all i ∈ B1 and j ∈ B̂/B1, (j, i) /∈ Eξ; (ii)

∑
g∈B1

Kg{log Ŝ(B̂;x);x} < 0.

Proof of Lemma 4(a). Profile likelihood
∑
g∈B̂ `g(q;x) is a concave function of q and so the Ŝ(B̂;x)

must satisfy ∑
g∈B̂

Kg{log Ŝ(B̂;x);x} = −
∑
g∈B̂

d

dq
`g{Ŝ(B̂;x);x} = 0.

The only one exception is when there is no observed event time before or at x for all g ∈ B̂, in this case∑
g∈B̂Kg{log Ŝ(B̂;x);x} = −

∑
g∈B̂ Ng(x) < 0 and Ŝ(B̂;x) = 1. �

Proof of Lemma 4(b). Suppose we can find a block B1 satisfying both conditions (i) and (ii), since
d

dq

∑
g∈B1

`g{log Ŝξ(B;x);x} = −
∑
g∈B1

Kg{log Ŝ(B̂;x);x} > 0,

we can increase estimate Sξ(B1;x) to increase the log profile likelihood without violating the constraints.
This contradicts Ĵξ(x) is the partition of the pointwise constrained estimator at time x. �

An algorithm to obtain the pointwise constrained estimator at a time x2 > x1

For any x2 > x1, it can be seen that Ŝg(x1) = Ŝg(x2) (g = 1, . . . , G) if there is no observation be-
tween x1 and x2, nor a censoring at x1, nor an event at x2. Now we consider the situation when only one
group g∗ has observations between x1 and x2. In this case, Algorithm 2 defines a method to obtain Ĵξ(x2)
and Ŝξ(B̂;x2), where ξ = {1, . . . , G}. The idea is to find the pointwise constrained estimator at x2 using
the estimate at x1 as the starting point.

To illustrate the algorithm, we first show an example in Fig. 5. In this, Ĵξ(x1) has five
blocks, B̂1, . . . , B̂5 and g∗ ∈ B̂2. At first, r = 2 and A2 = B̂2. Then we find ĴA2(x2), the par-
tition of the pointwise constrained estimator subject to constraints EA2 at time x2 and assume
that it has four blocks B̂2.1, . . . , B̂2.4 where Ŝ(B̂2.1;x2) > Ŝ(B̂2.2;x2) > Ŝ(B̂3, x1) ≥ Ŝ(B̂2.3;x2) >
Ŝ(B̂2.4;x2). The blocks B̂2.1 and B̂2.2 remain separate in the solution and blocks B̂3, B̂2.3 and B̂2.4 are
combined into A3. Then we again find ĴA3

(x2) and assume that it has two blocks B̂3.1 and B̂3.2 where
Ŝ(B̂3.1;x2) > Ŝ(B̂3.2;x2) > Ŝ(B̂4;x1). Blocks B̂3.1 and B̂3.2 remain separate in the solution and the
algorithm ends. The final partition Jξ(x2) contains blocks B̂1, B̂2.1, B̂2.2, B̂3.1, B̂3.2, B̂4 and B̂5.

LEMMA 5. Algorithm 2 gives the pointwise constrained estimator at x2 and the estimate for each
group is nonincreasing over time.
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1 Jξ(x2) = Ĵξ(x1) = {B̂1, . . . , B̂R}, where Ŝ(B̂1;x1) > · · · > Ŝ(B̂R;x1);
2 Find r such that g∗ ∈ B̂r and let Ar = B̂r;
3 while r ≤ R do
4 Find ĴAr(x2) = {B̂r.1, . . . , B̂r.Lr}, where Ŝ(B̂r.1;x2) > · · · > Ŝ(B̂r.Lr ;x2). This is

the partition of the pointwise constrained estimator at time x2 subject to constraint EAr

for groups in Ar ;
5 if r = R or Ŝ(B̂r.Lr ;x2) > Ŝ(B̂r+1;x1) then
6 Jξ(x2) = Jξ(x2)/{Ar} ∪ ĴAr(x2), i.e.,replace {Ar} with ĴAr(x2);
7 stop ;
8 else
9 `r = max{`∗ : Ŝ(B̂r.`∗ ;x2) > Ŝ(B̂r+1;x1)} ;

10 Ar+1 = B̂r+1 ∪ B̂r.(`r+1) ∪ · · · ∪ B̂r.Lr ;
11 Jξ(x2) = Jξ(x2)/{Ar, B̂r+1} ∪ {B̂r.1, . . . , B̂r.`r} ∪ {Ar+1} ;
12 r = r + 1 ;
13 end
14 end

Algorithm 2: An algorithm to obtain the pointwise constrained estimator at time x2 using
the pointwise constrained estimator at time x1 as the starting value, where x2 > x1 and only
population g∗ has observations between x1 and x2. Below ξ = {1, . . . , G}.
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Fig. 5: An example of Algorithm 2 in Appendix 4.
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Proof. Let Jξ(x2) = {B̂1, . . . , B̂u−1, B̂u.1, . . . , B̂w.`w , B̂w+1, . . . , B̂R} be the result from Algorithm
2. Then, Ŝ(B̂r;x2) = Ŝ(B̂r;x1) (r = 1, . . . , u− 1, w + 1, . . . , R) because there is no observation for
the groups in B̂r between x1 and x2. Thus, for all B ∈ Jξ(x2), the pointwise constrained estimator of
groups in B has the common estimate of survivor functions ŜB(B;x2), which implies that condition (ii)
in Lemma 2 must be satisfied.

Next, we prove Ŝ(B̂r;x1) ≥ Ŝ(B̂r.1;x2) (r = u, . . . , w).
Suppose Ŝ(B̂r;x1) < Ŝ(B̂r.1;x2), then this will gives a contradiction. There are two cases to consider.

First, we consider the first step in Algorithm 2. Here g∗ ∈ B̂r and Ar = B̂r from line 2 in Algorithm 2.
Then ∑

g∈B̂r.1

Kg{log Ŝ(B̂r;x1);x1} ≤
∑
g∈B̂r.1

Kg{log Ŝ(B̂r;x1);x2} {Lemma 3(a)}

≤
∑
g∈B̂r.1

Kg{log Ŝ(B̂r.1;x2);x2} {Lemma 3(b)} (A1)

≤ 0 {Lemma 4(a)}.
From Lemma 3(b), equality holds in (A1) only when Kg{log Ŝ(B̂r.1;x2);x2} = −Ng(x2) for all g ∈
B̂r.1. By our convention to set the estimate of a survivor function as low as possible when the number at
risk is zero, Ŝ(B̂r.1;x2) = 0 if Ng(x2) = 0 for all g ∈ B̂r.1. Since Ŝ(B̂r.1;x2) > Ŝ(B̂r;x1) ≥ 0 by our
assumption, we have

∑
g∈B̂r.1 Ng(x) > 0. Hence we find that

∑
g∈B̂r.1 Kg{log Ŝ(B̂r.1;x1);x1} < 0,

which implies that B̂r.1 ⊂ B̂r and both conditions in Lemma 4(b) are satisfied. This contradicts that
B̂r ∈ Ĵξ(x1).
Second, we consider subsequent steps in Algorithm 2. In this case, Ar = B̂r ∪ B̂(r−1).(`r−1+1) ∪ · · · ∪
B̂(r−1).L(r−1)

, which is from previous step in line 10 of Algorithm 2, and block B̂r.1 can be divided into
blocks B∗`r−1

, . . . , B∗Lr−1
such that B∗`r−1

⊂ B̂r and B∗` ⊂ B̂(r−1).`, ` = `r−1 + 1, . . . , Lr−1. Since
Lr−1∑
`=`r−1

∑
g∈B∗`

Kg{log Ŝ(B̂r.1;x2);x2} =
∑
g∈B̂r.1

Kg{log Ŝ(B̂r.1;x2);x2} ≤ 0,

we find that either there is at least one `′ that satisfies
∑
g∈B∗

`′
Kg{log Ŝ(B̂r.1;x2);x2} < 0 or∑

g∈B∗`
Kg{log Ŝ(B̂r.1;x2);x2} = 0 (` = `r−1, . . . , Lr−1).

If
∑
g∈B∗`

Kg{log Ŝ(B̂r.1;x2);x2} = 0 (` = `r−1, . . . , Lr−1), we pick `′ such that
∑
g∈B∗

`′
Ng(x2) >

0. Since Ŝ(B̂r.1;x2) > Ŝ(B̂r;x1) ≥ Ŝ(B̂(r−1).`;x2) (` = `r−1 + 1, . . . , Lr−1), if `′ = `r−1, then we
have∑
g∈B∗

`′

Kg{log Ŝ(B̂r;x1);x1} ≤
∑
g∈B∗

`′

Kg{log Ŝ(B̂r;x1);x2} ≤
∑
g∈B∗

`′

Kg{log Ŝ(B̂r.1;x2);x2} = 0;

(A2)
otherwise `′ > `r−1, then we have∑

g∈B∗
`′

Kg{log Ŝ(B̂r−1.`′ ;x2);x2} ≤
∑
g∈B∗

`′

Kg{log Ŝ(B̂r.1;x2);x2} = 0. (A3)

Neither the equality in equation (A2) nor the equality in equation (A3) can hold since
otherwise

∑
g∈B∗

`′
Kg{log Ŝ(B̂r.1;x2);x2} =

∑
g∈B∗

`′
Ng(x2) < 0. Hence we find that∑

g∈B∗
`′
Kg{log Ŝ(B̂r;x1);x1} < 0 in equation (A2) or

∑
g∈B∗

`′
Kg{log Ŝ(B̂r−1.`′ ;x2);x2} < 0

in equation (A3), which contradicts B̂r ∈ Ĵξ(x1) or B̂r.`′ ∈ ĴAr (x2).
Thus, we established that Ŝ(B̂1;x2) ≥ · · · ≥ Ŝ(B̂u−1;x2) ≥ Ŝ(B̂u;x1) ≥ Ŝ(B̂u.1;x2) ≥

· · · ≥ Ŝ(B̂u.Lu ;x2) ≥ Ŝ(B̂u+1;x1) ≥ Ŝ(B̂(u+1).1;x2) ≥ · · · ≥ Ŝ(B̂w.Lw ;x2) ≥ Ŝ(B̂w+1;x2) ≥
· · · ≥ Ŝ(B̂R;x2). It is easy to see that the constraints are not violated in the solution Jξ(x2)

because Ŝ(B̂u−1;x2) ≥ Ŝ(B̂u.1;x2), Ŝ(B̂r.Lr ;x2) ≥ Ŝ(B̂(r+1).1;x2) (r = u, . . . , w − 1), and
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Ŝ(B̂w.Lw ;x2) ≥ S(B̂w+1;x2). Therefore, the result from Algorithm 2 is the pointwise constrained
estimator at time x2. Furthermore, for any g ∈ B̂r (r = 1, . . . , u− 1, w + 1, . . . , R), Ŝg(x2) = Ŝg(x1)

since B̂r ∈ Jξ(x2) and Ŝ(Br;x1) = Ŝ(Br;x2), and for any g ∈ B̂r (r = u, . . . , w), Ŝg(x2) ≤ Ŝg(x1),
since g ∈ B̂r′.` for an r′ such that r′ ≥ r and Ŝ(B̂r;x1) ≥ Ŝ(B̂r′.`;x2). �

To complete the proof of Theorem 2 when two or more groups have observations between x1 and
x2, we can produce the pointwise constrained estimator by sequentially including observations from a
group at a time. Since each time when we add more observations from a group, the pointwise constrained
estimator will not increase compared to that before adding these observations, the pointwise constrained
estimator will not increase over time.

APPENDIX 5
Proof of Theorem 3

To establish this, we first prove

LEMMA 6. max1≤g≤G |S∗g (t)− Sg(t)| ≥ max1≤g≤G |Ŝg(t)− Sg(t)|.

Proof. At a fixed time t, we first prove for any k,
Ŝk(t)− Sk(t) ≤ max

1≤g≤G
{S∗g (t)− Sg(t)}.

If Ŝk(t) ≤ S∗k(t), then Ŝk(t)− Sk(t) ≤ S∗k(t)− Sk(t) ≤ max1≤g≤G{S∗g (t)− Sg(t)}.
If Ŝk(t) > S∗k(t), then there must be at least one r in the same pooled group such that Sr(t) ≤ Sk(t)

and S∗r (t) ≥ Ŝr(t) = Ŝk(t). Otherwise, if we divide this pooled group B into two blocks B1 = {g : g ∈
B,Sg(t) ≤ Sk(t)} and B −B1, then the likelihood will increase if we lower the common estimate of
groups in block B1 at time t since all estimates of survivor functions for the groups in B1 change towards
the unrestricted maximum likelihood estimators, and the constraint will not be violated, which contra-
dicts that Ŝg(t) is the pointwise constrained estimator. It follows that Ŝk(t)− Sk(t) ≤ Ŝr(t)− Sr(t) ≤
S∗r (t)− Sr(t) ≤ max1≤g≤G{S∗g (t)− Sg(t)}.

A similar argument shows that
Ŝk(t)− Sk(t) ≥ min

1≤g≤G
{S∗g (t)− Sg(t)}.

Thus,
− max

1≤g≤G
|S∗g (t)− Sg(t)| ≤ min

1≤g≤G
{S∗g (t)− Sg(t)} ≤ Ŝk(t)− Sk(t)

≤ max
1≤g≤G

{S∗g (t)− Sg(t)} ≤ max
1≤g≤G

|S∗g (t)− Sg(t)|.

So
|Ŝk(t)− Sk(t)| ≤ max

1≤g≤G
|S∗g (t)− Sg(t)|.

This establishes Lemma 6. �

For the case when t ≤ τ = min{τ1, . . . , τG} and ng →∞, g = 1, . . . , G,

lim
ng→∞

pr{sup
t<τ
|Ŝg(t)− Sg(t)| > ε} ≤ lim

ng→∞
pr{sup

t<τ
max

1≤k≤G
|S∗k(t)− Sk(t)| > ε}

≤
G∑
k=1

lim
nk→∞

pr{sup
t<τ
|S∗k(t)− Sk(t)| > ε} = 0.

(A4)

Next we consider the case when t > τ and ng →∞ (g = 1, . . . , G).

LEMMA 7. For a given k, let E+
k = {(k′, k) ∈ E}, where E = {(g′, g) : Tg′ ≥st Tg (g, g′ =

1, . . . , G)}. If Nk(t) = 0, then for any group g satisfying Ng(t) > 0, Ŝg(t) = S̃g(t), where S̃g(t) is the
pointwise constrained estimator subject to constraints defined by E/E+

k , which denotes the set of con-
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straints in E excluding those in E+
k .

Proof. The only possible situation that S̃g(t) is not the pointwise constrained estimator subject to
the constraints defined by E is that there exist (k′, k) ∈ E+

k and S̃k′(t) < S̃k(t). Since Nk(t) = 0, the
likelihood does not change if we lower the estimate for group k at time t. So set S̃k(t) = min{S̃g(t) :
(g, k) ∈ E+

k }, then all constraints in E will be satisfied, hence S̃g(t), g 6= k is the pointwise constrained
estimator. We have shown in Appendix 4 that Ŝg(t) is unique if Ng(t) > 0. Therefore Ŝg(t) = S̃g(t) if
Ng(t) > 0. �

Let Q∗g(t) = S∗g{min(t, τ∗g )} and Qg(t) = Sg{min(t, τg−)}, where τ∗g is the last observed time in
group g. Then

LEMMA 8. Q∗g(t) is uniformly consistent for Qg(t) on [0,∞).

Proof. If Scg(τg−) = 0, then τ∗g → τg as ng goes to infinity,
sup
t<∞
|Q∗g(t)−Qg(t)| = sup

t<τg

|S∗g (t)− Sg(t)| → 0 with probability 1.

If Scg(τg−) > 0, then Sg(τg) = Sg(τg−) by the condition of no common jumps of Sg(t) and Scg(t),
and τ∗g = τg as ng goes to infinity. So

sup
t<∞
|Q∗g(t)−Qg(t)| = sup

t≤τg
|S∗g (t)− Sg(t)| → 0 with probability 1,

under the condition Sg(τg) = Sg(τg−) {Corollary 1.2 in Stute & Wang 1993, page 1595}. �

Let E(t) = E/
⋃
k:τk<t

E+
k and let Q̂g(t) be the pointwise constrained estimator of Qg(t) subject to

constraintE(t), then the strong uniform consistency for Q̂g(t) holds for all t ≥ 0 using the same argument
leading to the result in equation (A4). Since Q̂g(t) = Ŝg(t) by applying Lemma 7 multiple times and
Qg(t) = Sg(t) for all t < τg , the strong uniform consistency of Ŝg(t) for Sg(t) is established on [0, τg).
If Sg(τg−) = Sg(τg), the strong uniform consistency of Sg(t) for Sg(t) holds on [0, τg].

This completes the proof of Theorem 3.

APPENDIX 6
Proof of Theorem 4

Let ZLg (x) = n1/2{logS∗g (x)− logSg(x)}, then by the delta method, ZLg (x)→ Zg/Sg(x) (g =
1, . . . , G) in distribution, where Zg is defined in section 3. For a fixed x, since S∗g (x) is a consistent es-
timator of Sg(x), if (i, j) ∈ E and Si(x) > Sj(x), pr{S∗i (x)− S∗j (x) ≤ 0} → 0 as ni, nj →∞, which
means that the constraint between group i and j is asymptotically inactive with arbitrary large probability
at time x. So the asymptotic distribution of Ŝg(x) is only determined by the groups with the same true
survivor function at time x.

For any group g, Ng(x)/ng → Sg(x)S
c
g(x) in probability as ng →∞. So 1/Ng(x) = Op(1/n) for

all x where Sg(x)Scg(x) > 0. Let q̂ = Avn(`, u, x) be the common value of the survivor function when
combining groups ` to u at time x and assume that S`(x) = · · · = Su(x). Then from Theorem 1 and using
the fact that Kg(q̂;x)/n→ 0 in probability as n→∞, it follows that for each g, ` ≤ g ≤ u,

q̂ =
∑
Xgi≤x

log

{
1− dgi

ngi +Kg(q̂;x)

}
= −

∑
Xgi≤x

dgi
ngi +Kg(q̂;x)

{
1 +Op

(
1

n

)}

=
∑
Xgi≤x

log

(
1− dgi

ngi

)
+
∑
Xgi≤x

dgi
ngi

Kg(q̂;x)

ngi
{1 + op(1)}+Op

(
1

n

)
.

Thus,

n1/2{q̂ − logSg(x)} = ZLg (x) + n1/2
∑
Xgi≤x

Kg(q̂;x)
dgi
n2gi
{1 + op(1)}+Op(n

−1/2). (A5)
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Since both n1/2{q̂ − logSg(x)} and ZLg (x) are bounded in probability, n1/2
∑
Xgi≤x dgiKg(q̂;x)/n

2
gi

must be bounded in probability. Thus equation (A5) becomes

n1/2{q̂ − logSg(x)} = ZLg (x) + n1/2Kg(q̂;x)
∑
Xgi≤x

dgi
n2gi

+ op(1). (A6)

Let wgn(x) = n/{S2
g(x)

∑
Xgi≤x dgi/n

2
gi}. It is well known that

1

ng

∑
Xgi≤x

dgi
n2gi
→ Vg(x) in probability as ng →∞.

Thus wgn(x)→ cg/σ
2
g(x) = wg(x) as n→∞. Multiplying equation (A6) by wgn(x) gives

wgn(x)n
1/2{q̂ − logSg(x)} = wgn(x)Z

L
g (x) +

n
3
2Kg(q̂;x)

S2
g(x)

+ op(1). (A7)

Since
∑u
g=`Kg(q̂;x) = 0 for any n, summing equation (A7) over g from ` to u and dividing by∑u

g=` wgn(x) yields

n1/2{q̂ − logSk(x)} =
∑u
g=` Z

L
g (x)wgn(x)∑u

g=` wgn(x)
+ op(1)→

∑u
g=` Zg(x)wg(x)

Sk(x)
∑u
g=` wg(x)

in distribution, for any k, ` ≤ k ≤ u, because all Sg(x)′s are equal for ` ≤ g ≤ u. Thus by the delta
method, we have

n1/2{Avn(`, u, x)− Sk(x)} →
∑u
g=` Zg(x)wg(x)∑u

g=` wg(x)

in distribution.
Robertson & Waltman (1968) showed that the maximum likelihood estimator under the simple ordering

constraint is
Ŝk(x) = min

Lk(x)≤`≤k
max

k≤u≤Uk(x)
Avn(`, u, x),

where Lk(x) = min{i : Si(x) = Sk(x)} and Uk(x) = max{i : Si(x) = Sk(x)} as defined in Theorem
4. Thus

n
1/2
k {Ŝk(x)− Sk(x)} = c

1/2
k min

Lk(x)≤`≤k
max

k≤u≤Uk(x)
n1/2{Avn(`, u, x)− Sk(x)}

→ c
1/2
k min

Lk(x)≤`≤k
max

k≤u≤Uk(x)

∑u
g=` Zg(x)wg(x)∑u

g=` wg(x)

in distribution.
This completes the proof of Theorem 4. Now we discuss extensions and special cases of Theorem 4.
First consider the case when there exists g′ such that cg′ = 0 while cg > 0. The asymptotic distribution

of n1/2g {Ŝg(x)− Sg(x)} will be the same as in equation 7 with the weight for group g′ set to zero. This
is because

lim
cg′→0

Zg′(x)wg′(x)∑u
g=` wg(x)

= lim
cg′→0

N(0, 1/wg′)wg′(x)∑u
g=` wg(x)

= lim
cg′→0

N(0, 1)w
1/2
g′ (x)∑u

g=` wg(x)
→ 0 in probability.

This result might indirectly show that the finite samples can be ignored in the asymptotic properties in our
setting.

Then we discuss the case when there are some groups for which the support of the censoring distri-
bution is less than x. As discussed in Appendix 5, the asymptotic distribution of n1/2g {Ŝg(x)− Sg(x)},
x < τg , can be obtained by modifying the constraint set to E(x). Ordering constraints Tk′ ≥st Tk (k′ =
1, . . . , k − 1) are removed if x > τ∗k . Also if Sk(x) < Sk(τk−), then constraints Tk ≥st Tk′ (k = k +
1, . . . , G) will be asymptotically irrelevant because S∗k(x) can always take value S∗k(τ

∗
k ) and S∗k(τ

∗
k ) >

S∗k′(x) (k
′ = k + 1, . . . , G) asymptotically. So group k can be removed from obtaining the asymptotic

distribution of n1/2g {Ŝg(x)− Sg(x)}, x < τg or equivalently we can set wk = 0 in equation 7 at time x.
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If Sk(x) = Sk(τk−), the problem will be changed to the partial ordering case and then we can appeal
to the Conjecture in section 3 to give the asymptotic distribution of n1/2g {Ŝg(x)− Sg(x)}. For example,
in the case where T1 ≥st T2 ≥st T3 ≥st T4 and τ1 < τ2 < τ3 < τ4, we consider the asymptotic distri-
bution of n1/24 {Ŝ4(x)− S4(x)} at time x ∈ [τ3, τ4). If S1(x) = S1(τ1−) = · · · = S4(x) = S4(τ4−), the
constraints at time x are changed to T1 ≥st T4, T2 ≥st T4 and T3 ≥st T4.

APPENDIX 7
Algorithm to calculate ag (g = 1, . . . , G) in section 5·2

Initialization: A = {1, . . . , G}, a1 = · · · = aG = 1;
while A 6= ∅ do

foreach i ∈ A do
a∗i = 1;
foreach j ∈ {1, . . . , G} do

if (i, j) ∈ E and S̃i(t, ai) < S̃j(t, aj) or (j, i) ∈ E and S̃j(t, aj) < S̃i(t, ai)
then

if j ∈ A then
ã = {a : S̃i(t, a) = S̃j(t, a)};

else
ã = {a : S̃i(t, a) = S̃j(t, aj)};

end
a∗i = min{a∗i , ã};

end
end

end
foreach i ∈ A and a∗i = ming{a∗g} do

ai = a∗i ;
A = A/{i};

end
end

Algorithm 3: Algorithm to calculate bias over-correction parameter ag (g = 1, . . . , G) in sec-
tion 5·2
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