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In this paper, we propose and analyze a mixed formulation for the Kelvin—Voigt—Brinkman—Forchheimer
equations for unsteady viscoelastic flows in porous media. Besides the velocity and pressure, our approach
introduces the vorticity as a further unknown. Consequently, we obtain a three-field mixed variational
formulation, where the aforementioned variables are the main unknowns of the system. We establish
the existence and uniqueness of a solution for the weak formulation, and derive the corresponding
stability bounds, employing a fixed-point strategy, along with monotone operators theory and Schauder
theorem. Afterwards, we introduce a semidiscrete continuous-in-time approximation based on stable
Stokes elements for the velocity and pressure, and continuous or discontinuous piecewise polynomial
spaces for the vorticity. Additionally, employing backward Euler time discretization, we introduce a
fully discrete finite element scheme. We prove well-posedness, derive stability bounds and establish
the corresponding error estimates for both schemes. We provide several numerical results verifying the
theoretical rates of convergence and illustrating the performance and flexibility of the method for a range
of domain configurations and model parameters.

Keywords: Kelvin—Voigt—Brinkman—Forchheimer equations; mixed finite element methods; velocity-
vorticity-pressure formulation.

1. Introduction

Fluid flows through porous media at high velocity occur in many industrial applications, such as
environmental, chemical and petroleum engineering. For instance, in groundwater remediation and oil
and gas extraction, the flow may be fast near injection or production wells or if the aquifer/reservoir is
highly porous. Accurate modeling and simulation of such flows are imperative in these fields to optimize
processes, ensure safety and minimize environmental impact. Mathematical models have been developed
to address different aspects of these flows. The Forchheimer model (Forchheimer, 1901) addresses
nonlinearities inherent in high velocity porous flow regimes. The Brinkman model (Brinkman, 1949)
incorporates both viscous and permeability effects, enabling precise simulations of fluid movement in
diverse environments, including highly porous media. On the other hand, many applications of interest
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2 S. CAUCAO AND I. YOTOV

involve flows of viscoelastic fluids through porous media, such as polymer injection and foam flooding
in enhanced oil and gas recovery, blood perfusion through biological tissues, and industrial filters. The
Kelvin—Voigt model (Kalantarov & Titi, 2009) provides a fundamental framework for describing the
viscoelastic behavior of fluids, capturing both viscosity and elasticity. The Kelvin—Voigt—Brinkman—
Forchheimer (KVBF) model (The Anh & Thi Trang, 2013), which generalizes and combines the
advantages of the three models, is suitable for fast viscoelastic flows in highly porous media.

Concerning the literature, there are papers devoted to the mathematical analysis of the KVBF
equations (see, e.g., The Anh & Thi Trang, 2013; Su & Qin, 2018; Mohan, 2020, and references
therein). In The Anh & Thi Trang (2013), the existence of a weak solution to the KVBF problem in
velocity-pressure formulation is proved by using the Faedo—Galerkin method. In addition, existence,
uniqueness and stability of a stationary solution is studied when the external force is time-independent
and small. Later on, the KVBF model with continuous delay is analyzed in Su & Qin (2018). In
particular, the authors demonstrate that, following the establishment of pullback-D absorbing sets
for the continuous solution process, the asymptotic compactness obtained through the decomposition
method leads to the existence of pullback-D attractors. Meanwhile, the existence and uniqueness of
a strong solution to the KVBF equations is obtained in Mohan (2020) by exploiting the m-accretive
quantization of both the linear and nonlinear operators. Furthermore, the existence of an exponential
attractor is established, along with a discussion concerning the inviscid limit of the 3D KVBF equations
towards the 3D Navier—Stokes—Voigt system, and subsequently towards the simplified Bardina model.
However, up to the authors’ knowledge, there is no literature focused on the numerical analysis of
the KVBF problem. On the other hand, several papers have been dedicated to the design and analysis
of numerical schemes for simulating the Brinkman—Forchheimer equations. In Louaked et al. (2015),
the authors introduce and analyze a perturbed compressible system that serves as an approximation
to the Brinkman—Forchheimer equations. They also develop a numerical method for this perturbed
system, which relies on a semi-implicit Euler scheme for time discretization and employs the lowest-
order Raviart-Thomas elements for spatial discretization. A pressure stabilization finite element method
is developed in Louaked ef al. (2017). In Kou et al. (2019), a time-discrete scheme for a variable
porosity Brinkman—Forchheimer model is applied for simulating wormhole propagation. In Caucao
& Yotov (2021), a mixed formulation based on the pseudostress tensor and the velocity field is
presented. By employing classical results on nonlinear monotone operators and a suitable regularization
technique in Banach spaces, existence and uniqueness are proved. A fully discrete scheme is developed,
which combines a finite element space discretization based on the Raviart—-Thomas spaces for the
pseudostress tensor and discontinuous piecewise polynomial elements for the velocity with a backward
Euler time discretization. Sub-optimal error estimates are derived. These estimates are improved in
Caucao et al. (2022), where a three-field formulation including the velocity gradient is developed and
analyzed. A staggered DG method for a velocity—velocity gradient—pressure formulation of the unsteady
Brinkman—Forchheimer problem is developed in Zhao et al. (2022). Well-posedness and error analysis
are presented for the semi-discrete and fully discrete schemes. The method is robust with respect to
the Brinkman parameter. More recently, a vorticity-based mixed variational formulation is analyzed in
Anaya et al. (2023), where the velocity, vorticity and pressure are the main unknowns of the system.
Existence and uniqueness of a weak solution, as well as stability bounds are derived by employing
classical results on nonlinear monotone operators. A semidiscrete continuous-in-time mixed finite
element approximation and a fully discrete scheme are introduced and optimal rates of convergence are
established.

The purpose of the present work is to develop and analyze a new vorticity-based mixed formulation
of the KVBF problem and to study a suitable conforming numerical discretization. To that end, unlike
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 3

previous KVBF works and motivated by Anaya er al. (2015), Anaya et al. (2021) and Anaya et al.
(2023), we introduce the vorticity as an additional unknown besides the fluid velocity and pressure. In
addition to the advantage of providing a direct, accurate, and smooth approximation of the vorticity,
our approach gives optimal theoretical convergence rates without requiring any small data or quasi-
uniformity assumptions on the mesh. Furthermore, unlike Anaya ef al. (2015), Anaya et al. (2021)
or Anaya et al. (2023), our method does not require any augmentation process. It is also important to
mention that another novelty and advantage of the present work is that it generalizes the model studied
in Anaya et al. (2023) by including the nonlinear convective term and an additional time-derivative term,
thus considering viscoelastic flows.

We establish the existence of a solution to the continuous weak formulation by employing tech-
niques from Showalter (1997), Caucao et al. (2021) and Caucao et al. (2023), combined with a
fixed-point argument, the Browder—Minty theorem and the Schauder theorem. The uniqueness is
achieved by contradiction arguments in conjunction with Gronwall’s inequality. Stability for the weak
solution is established by means of an energy estimate. We further develop semidiscrete continuous-
in-time and fully discrete finite element approximations. We emphasize that our formulation relies
on the natural H'-L? spaces for the velocity-pressure pair, facilitating the use of classical stable
Stokes elements such as the Taylor-Hood, Crouzeix—Raviart or MINI elements. Additionally, both
continuous and discontinuous piecewise polynomial spaces can be utilized for discretizing the vor-
ticity. We make use of the backward Euler method for the discretization in time. Adapting the
tools employed for the analysis of the continuous problem, we prove well-posedness of the discrete
schemes and derive the corresponding stability estimates. We further perform error analysis for the
semidiscrete and fully discrete schemes, establishing optimal rates of convergence in space and
time.

We have organized the contents of this paper as follows. In Section 2 we describe the model problem
of interest and develop the velocity-vorticity-pressure variational formulation. In Section 3, we show
that it is well posed using a fixed-point strategy, along with monotone operators theory and the classical
Schauder theorem. Next, in Section 4 we present the semidiscrete continuous-in-time approximation,
provide particular families of stable finite elements, and obtain error estimates for the proposed methods.
Section 5 is devoted to the fully discrete approximation. The performance of the method is studied
in Section 6 with several numerical examples in 2D and 3D, verifying the aforementioned rates of
convergence, as well as illustrating its flexibility to handle spatially varying parameters in complex
geometries. The paper ends with conclusions in Section 7.

In the remainder of this section, we introduce some standard notation and needed functional spaces.
Let 2 C Rd, d € {2,3}, denote a domain with Lipschitz boundary I". For s > 0 and p € [1, +0o0], we
denote by LP(£2) and W*P(£2) the usual Lebesgue and Sobolev spaces endowed with the norms || - [ p ()
and || - [lyspg), respectively. Note that WOP(2) = LP(R2). If p = 2, we write H*(£2) in place of WS?(£2)
and denote the corresponding norm by || - [|ys (). By H and H we will denote the corresponding vectorial
and tensorial counterparts of a generic scalar functional space H. The L?(£2) inner product for scalar,
vector or tensor valued functions is denoted by (:,) . The L2(I") inner product or duality pairing is
denoted by (., -) . Moreover, given a separable Banach space V endowed with the norm | - ||y, we let
LP(0,T; V) be the space of classes of functions f: (0,7) — V that are Bochner measurable and such
that ||l p g 7.vy < 00, with

T
|lf||£P(0,T;V) = / Ilf(t)ll%dt, ”f”LOO(o,T;V) = ess sup [[f ()]ly-
0 t€[0,T]
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4 S. CAUCAO AND I. YOTOV

In turn, for any vector field v := (v;),_; 4, we set the gradient and divergence operators, as

d
av; av;
vvi=|— d divy) =D .
v (8 ) an iv(v) ™
ij=1,d

X
J j=1 77

In what follows, when no confusion arises, | - | denotes the Euclidean norm in R” or R**”. In addition,
in the sequel, we will make use of the well-known Holder inequality given by

. 1 1
/Q If gl < ”f”LP(_Q) ||g||LQ(_Q) Vfe Lp(-Q)s Vge Lq(Q)s with 5‘1‘ a =1,

and Young’s inequality, for a,b > O and § > O,

b, (1.1

Finally, we recall the continuous injection I of H'(£2) into LP(£2) for p>1lifd=2orp € [1,6]if
d = 3. More precisely, we have the following inequality:

IWliray < ligl Wl e, ¥YweH' (), (1.2)

with ||ip || > 0 depending only on |§2| and p (see Quarteroni & Valli, 1994, Theorem 1.3.4).
We will denote by i, the vectorial version of i,.

2. The model problem and its velocity-vorticity-pressure formulation

Our model of interest is given by the Kelvin—Voigt—Brinkman—Forchheimer equations (see, e.g., The
Anh & Thi Trang, 2013; Su & Qin, 2018; Mohan, 2020). More precisely, given the body force term f
and a suitable initial data u,), the aforementioned system of equations is given by

3 9 A
a—ltl—Kza—tu—vAu+(Vu)u+Du+F|u|p_2u+Vp=f, diviw) =0 in £ x (0,71,
u=0 on I'x (0,7, u®=u, in 2, (@y=0 in (0TI 2.1)

where the unknowns are the velocity field u and the scalar pressure p. In addition, the constant x > 0
is a length scale parameter characterizing the elasticity of the fluid, v > 0 is the Brinkman coefficient
(or the effective viscosity), D > 0 is the Darcy coefficient, F > 0 is the Forchheimer coefficient and
p € [3,4] is a given number.

We next introduce a new velocity-vorticity-pressure formulation for (2.1). To that end, we first define
the trace operator p, and vorticity w:

v-t, ford=2, M_%, ford =2,
7, (V) = and w:=curlw) =1 dx; 9x,
vxn, ford=3, V xu, for d = 3.
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 5

Note that the curl of a two-dimensional vector field is a scalar, whereas the curl of a three-dimensional
vector field is a vector. In order to avoid a multiplicity of notation, we nevertheless denote it like a
vector, provided there is no confusion. In addition, in 2D, the curl of a scalar field g is a vector given by

, t
curl(q) = (a_q M) . Then, employing the well-known identity (Girault & Raviart, 1986, Section

dx2° ) X1
1.2.3) in conjunction with the incompressibility condition div(u) = 0 in £2 x (0, T'], we deduce that

curl(w) = curl(curl(u)) = —Au + V(div(u)) = —Au, (2.2)

from which we conclude that (2.1) can be equivalently rewritten as follows: Find (u, @, p) in suitable
spaces to be indicated below such that

Ju 0 Au

Jat Jat

+Du+Flu’2u+ (Vou+veurlw)+Vp = f in £2 x (0,71,

w = curl(u), divlu) =0 in £ x (0,7], (2.3)
u=0 on I'x (0T, w0 =wu, in £, @D =0 in (O,T].

Next, multiplying the first equation of (2.3) by a suitable test function v, we obtain

@,u, V) — k(3 Au, V) o + D (W, V) + F (Jul’2u,v)

+((Vuu,v) o +v (curl(w), v) o + (Vp,v) o = (f,v),, 2.4)

0
where we use the notation 9, := 37 Notice that the fourth and fifth terms in the left-hand side of

(2.4) require u to live in a smaller space than L?(£2). In particular, by applying Cauchy—Schwarz and
Holder’s inequalities and then the continuous injection i o (resp. iy) of H'(£2) into L” (£2) (resp. L*(£2)),
with p € [3,4], we find that

— —1 . -1
(w200 | = Tl o) I¥Leg@y = i 17 Tl IVl o) 2.5)
and
(Vw2 Vo] = 1Vullag) 12lso) Vs, < Tl Ml gy 12l o) IVl gy 26)

for all u,v,z € H'(£2), which, together with the Dirichlet boundary condition uw = 0 on I" (cf. (2.3))
suggest to look for the unknown u in H(l)(.Q) and to restrict the set of corresponding test functions v to
the same space. If a non-homogeneous condition of the form u = up on I" x (0, T is prescribed, with
boundary data up, satisfying f rUp -n = 0in (0,7], a suitable lifting approach must be employed to
ensure that both the velocity and its test functions belong to H(l)(.Q). Employing Green’s formula (Girault
& Raviart, 1986, Theorem 1.2.11), the sixth term in the left-hand side in (2.4) can be rewritten as

(curl(w),v)o = (w,curl(v)), —(y*(v),w)r = (w,curl(v)), Vve H(l)(.Q). 2.7)
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6 S. CAUCAO AND I. YOTOV

Thus, replacing back (2.7) into (2.4), integrating by parts the terms (9, Au,v)o and (Vp,v),, and
incorporating the second and third equations of (2.3) in a weak sense, we obtain the system

B u, V) +x2(3, VU, V) o + D(W, V) + F (Jul’2u,v),

+(Vou,v) g + v (w,curl(v)) o — (p,div(v)) o = (£, V), 2.8)
V(w,¥)o —v (¥, curl(n)), = 0, 2.9)
(g,div(n))p = 0, (2.10)

forall (v, ¥, q) € Hj(2) x L2(2) x L§(£2), where L§(£2) := {g e L*(22) : (¢, 1), =0}
Next, in order to write the above formulation in a more suitable way for the analysis to be developed
below, we set

u = (u,0) € H)(2) x L*(£2),
with corresponding norm given by
2 2 12 1 2
¥l = 10l = (V1 ) + ¥ 122g))  ¥Y = (¥ € B () x LA(2).

Hence, the weak form associated with the Kelvin—Voigt—Brinkman—Forchheimer equations (2.8)—(2.10)
reads: Given f:[0, 7] — H™'(£2) and u, € H}(£2), find (u,p):[0,T] — (H}(£2) x L2(2)) x L}(£2)
such that u(0) = u, and, fora.e.r € (0,7),

0
37 [E@()),¥] + [AQ®) @), v] + [B' (p(1)),v] = [F(),v] Yy e Hy(2) x L*(£2),

—[Bu(®),q1 =0 Vg eLj(9), (2.11)

where, given z € H(l)(.Q), the operators &, A(z) : (H(l)(.Q) X Lz(.Q)) — (H(l)(.Q) X Lz(.Q))/ and B:
(H)(£2) x L?(£2)) — L3(£2)' are defined, respectively, as

[E@).y] =@ V) + &% (Vu, Vv)g, (2.12)
[A@@),y] = [a@),v] + [e(@)(w),¥], (2.13)

[a),v] :=D W, V)g + F(lu’?u, V), +v (@ ¥)g

+ v(w,curl(v)) o — v (¢, curl(u)),, (2.14)
[c@@),v] = (Vwzv)g. (2.15)
[B®),q] := — (g.div(v)) g, (2.16)
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 7

and F € (H(lj(.Q) x L?(£2)) is the bounded linear functional given by
[F.v] := (f,v)q. (2.17)

In all the terms above, [-,-] denotes the duality pairing induced by the corresponding operators. In
addition, we let B': L3(2) — (H)(2) x Lz(.Q))/ be the adjoint of B, which satisfies ['(g),v] =
[B(y),q] forall v = (v, ¥) € H}(2) x L*(2) and g € L3(£2).

Now we define the kernel space of the operator B,

Vi= fv= 9 e H(@) x LX(@): [Bw,gl=0 Yqeli®),
which from the definition of the operator B (cf. (2.16)) can be rewritten as
V=K x LX), where K := {v cH)(2): div(v) =0 in 9} (2.18)

This leads us to the reduced problem: Given f : [0,T] — H_l(_Q) and u, € K, findu:[0,7] —
K x L2(.Q) such that u(0) = u, and, for a.e. r € (0, 7),

% [E@)), ¥] + [AQ@) (), v] = [F@),v] Vv eKxL* (). (2.19)

According to the definition of K (cf. (2.18)), owing to the inf-sup condition of 5 (cf. Ern & Guermond,
2004, Corollary B.71):

B / g div(v)
PO . wp d2 5 g veeld@. @20

sup
0£veH) (2) VIl (2

0£veH) (2)xL2(R2) ¥l
with 8 > 0, and using standard arguments, it is not difficult to show that the problem (2.19) is equivalent
to (2.11). This result is stated next and the proof is omitted.

Lemma 2.1, If (u,p): [0, 7] — (H)(£2) x L?(£2)) x L3(£2) is a solution of (2.11), then u:[0, 7] — K
and u = (u, @) is a solution of (2.19). Conversely, if u: [0, 7] — K x Lz(.Q) is a solution of (2.19), then
there exists a unique p: [0, 7] — L%(.Q) such that (u, p) is a solution of (2.11).

3. Well-posedness of the model

In this section, we establish the solvability of (2.19) (equivalently of (2.11)). To that end, we first collect
some previous results that will be used in the forthcoming analysis.

3.1 Preliminary results

We begin by recalling a key result, which will be used to establish the existence of a solution to (2.19).
In what follows, an operator A from a real vector space E to its algebraic dual E’ is symmetric and
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8 S. CAUCAO AND I. YOTOV

monotone if, respectively,
[AX),y] =[A®M),x] and [A(x) —AQM),x—y]=0 VxyekE.

In addition, Rg(A) denotes the range of A and a dual space with a seminorm is the space of linear
functionals on a vector space that are continuous with respect to the seminorm. The following theorem
is a slight simplification of Showalter (1997, Theorem IV.6.1(b)).

TueorREM 3.1. Let the linear, symmetric and monotone operator N be given from the real vector space
E to its algebraic dual E’, and let E), be the Hilbert space which is the dual of E with the seminorm

x|, = [N (x),x]"? x€E.

Let M :E — Ej be an operator with domain D = {x eE: M) e E;,} Assume that M is monotone
and RgWN + M) = E,’]. Then, for each f € Wl’l(O, T; EZ) and for each u, € D, there is a solution u of

a% N@®) + M) = f©) ae. 0<r<T, G.D
with
N(u) € W20, T;E,), u(r) eD, forall0<t<T and N(u(0)) =N (uy).
For the proof of the range condition in Theorem 3.1 we will utilize the Browder—Minty theorem

(Ciarlet, 2013, Theorem 9.14-1) stated below.

THeoREM 3.2. Let V be a real separable reflexive Banach space and let A: V — V' be a coercive and
hemicontinuous monotone operator. Then A is surjective, i.e., given any f € V’ there exists u such that

ueV and A(u)=f.

If A is strictly monotone, then A is also injective.

We recall that an operator A is hemicontinuous if, for each u, v, w € V, the real-valued function ¢
[A(u + tv),w] is continuous. In particular, if A is continuous, then it is hemicontinuous. Additionally,
A is strictly monotone if [A(u) — A(v),u —v] > 0 for all u # v in V and A is strongly monotone if
there exists a constant ¢ > 0 such that

[Aw) — AW),u —v] > cllu—v|} YuveV.

It is clear that strong monotonicity implies strict monotonicity.
Next, we establish the stability properties of the operators involved in (2.11). We begin by observing
that the operators &£, B and the functional F are linear. In turn, from (2.12), (2.16) and (2.17), and
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 9

employing Holder and Cauchy—Schwarz inequalities, there hold

Bw.gll = VIVl Y09 e (H@) x L2(2)) x Li@). (32)
[F.V][ < Iflg1 o) IVl ) < Iflg1 g V] Yy e Hy@) x L2(@),  (3.3)
and
€@, v| < max{L«?} ull [¥l, [E®,¥] = min{l,?} Vg o Yu.v e Hy(2) x LX),

(3.4)

which implies that 5 and F are bounded and continuous, and £ is bounded, continuous, and monotone.
On the other hand, given z € H(l)(.Q), it is readily seen the nonlinear operator A(z) (cf. (2.13)) is
bounded. More precisely, employing the Cauchy—Schwarz inequality, (2.5), and (2.6), we obtain

[A@) (), v]|

= ]D w,v)o +F (|u|"’_2u, Vg +v(w,¥)o +v(w,curl(v)o — v (¥, curl(u)), + (Vu)z, V)Q‘

p—1
= Cu {1+ 12l ) Tl gy + Nl ) + N0l 2y T, (3.5)

with C 4 > 0 depending on D, F, v, [li4|| and ||ip |I. In addition, using similar arguments to (2.6), it is not
difficult to see that the operator ¢(z) (cf. (2.15)) satisfies

|[c(z)(ﬂl - Ez),X]| = ||z||L4(_Q) lu, — u2||H|(Q) ||V||L4(_Q)

< gl 1zl ) lluy —wyll ¥l Vz € Hy(2), Yu,,u,,v € Hy(2) x L*(£2), (3.6)
and

|[C(Zl - Zz)(ﬂ),!]| < llzy — Zz||L4(_Q) ”u”Hl(_Q) ||V||L4(_Q)

< Uiyl 12y — 2/l ) Ul ¥ ¥2p,2, € Hy(2), Yu,v € Hy(2) x L2 (2).  (3.7)
In turn, observe that for any z € K (cf. (2.18)), there holds
[c@®,¥1=0 Vv eHy) x L*(2). (3.8)

Finally, given u € K (cf. (2.18)) and recalling the definition of the operators £ and A(u) (cf. (2.12),
(2.13)), we note that problem (2.19) can be written in the form of (3.1) with

E:=KxL*2), u=u=ww), N :=E& M:= AQu. (3.9)
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10 S. CAUCAO AND I. YOTOV

Let E} be the Hilbert space that is the dual of K x L?(£2) with the seminorm induced by the operator £
(cf. (2.12)), which thanks to the fact that « > 0, is given by

1/2
1¥le = {v v + 62 (v T} T = VI, YY=.9) € Hy(2) x LA(@).

Then we define the spaces
E, == H'(2)x (0}, D= {g cKxL2(2): M) e E,;}. (3.10)

In the next section we prove the hypotheses of Theorem 3.1 to establish the well-posedness of (2.19).
3.2 Range condition

We begin with the verification of the range condition in Theorem 3.1. Let us consider the resolvent
system associated with (2.19): Findu = (u,w) € K x L?(£2) such that

[(€ + Aw)W),v] = [F,¥] VveKx LX), (3.11)

where F ¢ H™! (£2) x {0} is a functional given by F(g) = (f, V) for somefe H™! (£2). In the following
two sections we prove that (3.11) has a solution by employing a suitable fixed-point approach.

3.2.1 A fixed-point strategy. Let us define the operator 7 : K — K by
J@):=u Vzek 3.12)

where u is the first component of the solution of the partially linearized version of problem (3.11): Find
u = (u,®) € K x L*(£2) such that

[(€ 4+ A@)@),v] = [F,v] ¥veKxLX(2). (3.13)

Itis clear thatu = (u,®) € K x L?(£2) is a solution of problem (3.11) if and only if 7 (u) = u. In
this way, to establish existence of solution of (3.11) it suffices to prove that [ has a fixed-point in K.

Before proceeding with the solvability analysis of (3.11), we first establish the well-definiteness
of the fixed-point operator 7. To that end, in what follows we prove the hypothesis of the Browder—
Minty theorem (cf. Theorem 3.2) applied to the problem (3.13). We begin by observing that, thanks to
the reflexivity and separability of L%(£2), it follows that H(l)(.Q), L2(£2) and L%(.Q) are reflexive and
separable as well.

We continue by establishing a continuity bound of the nonlinear operator £ + A(z).

Lemma 3.3. Let z € K. Then, there exists Ly > 0, depending on D, F, v, k, p, [li, [, lis|| and |$2], such
that

1€+ A@)@ — (€ + A@)®
p—2 p—2

= Ly {(1+ W2l + 1000+ IVI500) ) 0= Vi gy + o = Fliag) ) (G14)

forallu = (u,w),v=(v,¥) € K x L2().
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 11

Proof. Letz € Kandletu = (w,w),v = (v,¥),w = (W,¢) € K x L2(.Q). From the definition of
the operators &, A(z) (cf. (2.12), (2.13)), using the continuity bounds (3.4) and (3.6), and the Holder and
Cauchy—Schwarz inequalities, we deduce that

[(€ + A@)W — (€ + A@)®. W] < F [[ul"2u— ¥ 72V o) 1Wlee)
+ 2 max {1+ D« v} u— vl 1wl + il 12l g 1t — Vilgg1 g, W1, (3.15)
with v € [4/3,3/2] and 1/p 4+ 1/v = 1. In turn, using Barrett & Liu (1993, Lemma 2.1, eq. (2.1a))

and the continuous injection i o of H! (£2) into L (£2) (cf. (1.2)), we deduce that there exists a constant
¢, > 0, depending only on |§2| and p, such that

_ — -2
|||ll|p Tu — [v|]? 2V”LU(Q)||W||L/’(Q) =c¢, (”u”L/’(Q) + ”V”LP(_Q))p ”u_V”L/’(Q) ||W||LP(Q)

_ . -2 -2
= 207, i 1” (Il ) + IV ) 0= Vi ) Wl - (3.16)
Then, replacing back (3.16) into (3.15), and after simple computations, we obtain (3.14) with

Ly, = max {2 max{1 + D,k v}, [lig1%, 277 F i, |17 cp}.
0

‘We continue our analysis by proving the coercivity and strong monotonicity of the nonlinear operator
&+ A(z) (cf. (2.12), (2.13)).

Lemma 3.4. Letz € K (cf. (2.18)). Then, there exists yy,, > 0, depending only on D and «, such that
[(€ + A@)®). V] = Yy IVl ) + 0 W 1T2 - (3.17)
and

(€ + A@)W — (€ + A@)®.u = ¥] = yey [0 =VIg o+ Ve —¥lf . G18)

forallu = (u,w),v = (v,¥) € K x L2(2).

Proof. Letz € Kandletu = (u,w),v= (v,¥) € Kx L2(£2). Then, from the definition of the operators
&, A() (cf. (2.12), (2.13)) and the identity (3.8), we deduce that

[(€ + A@) W), v] = [EW), V] + [a(¥W), V] + [e(2)(V), V]

= (14 D) V{2, + 47 IVVIT2(g) + FIVITe (o) + v I¥ T2 o) (3.19)

which, together with the fact that the term F ||V||£p (2)On the right-hand side of (3.19), which is positive,
can be neglected, yields (3.17) with yy; := min{1 + D, K2},
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12 S. CAUCAO AND I. YOTOV

On the other hand, proceeding as in (3.19) and using the fact that £ and c¢(z) are linear, we get
(€ + A@)@ — (€ + A@)W.u~v] = (1 +D) [lu = V[}> o+ V@ =W o)
pP=2 _ |y|P—2 _ _ 2
+F(u’a— v " vu—-v)o +v e '/,”LZ(Q)' (3.20)

Thanks to (Barrett & Liu, 1993, Lemma 2.1, eq. (2.1b)), we know that there exists a constant C b > 0,
depending only on |§2| and p, such that

(|u|p_2u— |v|P—2v,u—v)Q > C, flu— >0 VuveL’ (). (3.21)

ViIgs @)

Thus, (3.20) yields (3.18) with the same constant yy; as in (3.17). O

Lemma 3.5. The operator 7 : K — Kintroduced in (3.12) is well defined. In particular, for each z € K,
there exists a unique solution u = (u, ) € K x LZ(.Q) to (3.13) and J (z) = u. Moreover,

1 -
”u”Hl(_Q) = _”f”H*l(_Q)- (3.22)
Vv

Proof. Letz € K. Owing to the continuity, coercivity and strong monotonicity of the operator £ + .A(z)
(cf. Lemmas 3.3 and 3.4), the well-posedness of (3.13) is a direct consequence of the Browder—Minty
theorem (cf. Theorem 3.2). This is clearly equivalent to the existence of a unique u € K, such that
J (z) = u. Moreover, (3.22) follows readily by testing (3.13) with v = u and using the coercivity bound
of £ + A(z) (cf. (3.17)) and the continuity bound of F (cf. (3.3)). O

‘We next derive a continuity bound for the operator 7.
LemmA 3.6. For all z;,z, € K, there holds

ligll =
T (z) — j(zz)”Hl(Q) = )/_g ”f”}rl(g) llz, — Z2||L4(_Q)' (3.23)

KV

Proof. Given z;,z, € K, weletu; = J(z;) and u, = J(z,). According to the definition of 7 (cf.
(3.12)—(3.13)), it follows that

[(€ +Az))@) — (€ + A®Z)) (W), v] = 0 Vv eKx L*(£2).

Taking v = u; — u, in the above system, and recalling the definition of £, A(z) (cf. (2.12), (2.13)), as
well as subtracting and adding the term [¢(z;)(u,), u; — u,] in order to rewrite [A(z,)(u,),u; —u,] as
[A(z))(u,),u; —u,] — [e(z; — 2,)(W,),u; — u,], we obtain the identity

[(€ + Az)) (@) — (€ + Alz)) W), u; — 1] = —[e(z) — 7)) (W), u; — Wy ]. (3.24)
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 13

Hence, using the strong monotonicity of £ 4+ A(z) (cf. (3.18)) and the continuity bound of ¢ (cf. (3.7)),
we deduce that

2 .
Vo 10 = 01130 ) = il 0l o) 121 = Zollgs o 1) = sl g,

which, together with (3.22), implies (3.23). [l

3.2.2  Solvability analysis of the fixed-point equation. Having proved the well-posedness of the
problem (3.13), which ensures that the operator 7 is well defined, we now aim to establish existence of a
fixed point of the operator 7. For this purpose, in what follows we verify the hypothesis of the Schauder
fixed-point theorem in a suitable closed set.

Let W be the bounded and convex set defined by

1 ~
W .= [z eK: ||z||H1(_Q) < —||f||H71(9) . (3.25)
Yrv

The following lemma establishes the existence of a fixed point of 7 by means of the Schauder fixed
point theorem.

Lemma 3.7. Let W be defined as in (3.25). Then the operator 7 has at least one fixed-point in W, that
is, the resolvent system (3.11) has a solution u = (u,®) € W x Lz(.Q).

Proof. Givenz € W, we first recall from Lemma 3.5 that .7 is well defined and there exists a unique u €
K such that 7 (z) = u, which together with (3.22) implies thatu € W and proves that 7 (W) € W. Next,
we observe from estimate (3.23) that 7 is continuous. In addition, using again (3.23), the compactness
of the injection iy : HI(Q) — L4(.Q) (see, e.g., Quarteroni & Valli, 1994, Theorem 1.3.5), and the
well-known fact that every bounded sequence in a Hilbert space has a weakly convergent subsequence,
we deduce that J (W) is compact. Then, using the Schauder fixed point theorem written in the form
(Ciarlet, 2013, Theorem 9.12-1(b)), we conclude that the operator [ has at least one fixed-point in W,
that is, there exists u = (u,@) € W x Lz(.Q) a solution to (3.11). O

3.3 Construction of compatible initial data

Now, we establish a suitable initial condition result, which is necessary to apply Theorem 3.1 to the
context of (2.19).

Lemma 3.8. Assume the initial condition u, € K (cf. (2.18)). Then, there exists @, € L?(£2) such that
u, = (1), ®y) and

Auy)(uy) € H'(2) x {0}. (3.26)

Proof. We proceed as in Anaya et al. (2023, Lemma 3.7). In fact, we define @, := curl(u), withuy € K
(cf. (2.18)). It follows that w, € L2(£2). In addition, using (2.2), we get

veurl(wg) = —v Auy in 2. (3.27)
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14 S. CAUCAO AND I. YOTOV

Next, multiplying the identities (3.27) and v (@, — curl(uy)) = 0 by v € H\(2) and ¢ € L*(2),
respectively, integrating by parts as in (2.7), and after minor algebraic manipulation, we obtain

[A(uy)(wy),v] = [Fy,v] VveH)(2) x L*(2), (3.28)

with Fy = (f;,, 0) and
- V) o = v (Vuy, Vv), + (D u,+F |u0|p_2uo + (Vuo)uo,v)g,

which together with the continuous injection of H' (£2) into L* (£2) and L”(£2), with p € [3,4], cf. (1.2),
implies that

-1
|| = Co {100l gy + N0l o) + 8010 } IVl @, (3.29)

with Cy := max {v +D,F i, |7, ||i4||2}. Thus, F,) € H~!(£2) x {0} so then (3.26) holds, completing the
proof. g

Remark 3.1. The assumption on the initial condition u, € K (cf. (2.18)) is less restrictive than the one
employed in Anaya ef al. (2023, Lemma 3.7) (see also Caucao & Yotov, 2021, Lemma 3.6, Caucao
et al., 2022, Lemma 3.7 and Djoko & Razafimandimby, 2014, eq. (2.2)) for the analysis of the unsteady
Brinkman—Forchheimer problem since the datum f is now in H () instead of L2(£2). Note also that
u, satisfying (3.26) is not unique. In addition, (uy,py) = ((ug, curl(uy)),0) can be chosen as initial
condition for (2.11), that is, (u,, py) satisfy

[A(uy) (1), vl + [B'(pg), vl = [Fy,¥] ¥y € H)(2) x L*(£2), (3.30a)

—[B(uy),q1 =0 Vg eL3(£2). (3.30b)

3.4 Main result
We now establish the well-posedness and stability bounds for the solution of problem (2.19).

THeoREM 3.9. For each compatible initial data uy = (ug, ;) constructed as in Lemma 3.8 and each
fewh! o, T, H_l(Q)), there exists a unique solution of (2.19),u = (u, ) :[0,T] — K x Lz(.Q) with
ue WI’OO(O, T; H_l(.Q)) and u(0) = u,. In addition, @(0) = @ = curl(u) and there exists a constant
Cxyr > 0 only, depending on v, D and «, such that

lall e 0,710 (2)) + Il 2070202 F 1@l 20,750202))
< Coue VP (Ifl20 7012 + ol ) - (3.31)

Proof. We recall that (2.19) fits the problem in Theorem 3.1 with the definitions (3.9) and (3.10). Note
that A/ is linear, symmetric and monotone since £ is (cf. (3.4)). In addition, since A(u) is strongly
monotone for any u € K, it follows that M is monotone. On the other hand, from Lemma 3.7 we know
that, given (/f,()) € E, there exists u € K x L2(£2), such that (f,O) = (N + M)(u), which implies
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 15

Rg(N + M) = E,. Finally, considering u, € K, from a straightforward application of Lemma 3.8,
we are able to find w, € Lz(.Q) such that uy = (uy, @) € D and (f,0) € E;). Therefore, applying
Theorem 3.1 to our context, we conclude the existence of a solution u = (u,®) to (2.19), with u €
W0, 7;H1(£2)) and u(0) = u,,.

We next show the stability bound (3.31), which will be used to prove that the solution of (2.19) is
unique. Indeed, to derive (3.31), we proceed as in Caucao & Yotov (2021, Theorem 3.3) and choose
v=uin(2.19) to get

la 2 2 || Vu? A)(u),u] = (f,u) 3.32)
3 30 (172 )+ 1VUIE: o)) + LA@@W. ] = Ewg. 3.
Next, from the definition of the operators .A(z), a and ¢(z) (cf. (2.13), (2.14), (2.15)), employing similar
arguments as in (3.17) (cf. (3.19)), particularly using the identity (3.8) to ensure that [c(u)(u),u] = 0,

together with the well-known inequality for dual norms: (f,u), < |If ||H_1(_Q) la]l g @) and Young’s
inequality, we obtain

2 1
T 9 Ml ) + D I 2 g + F I ) + V1012 ) = 5 (K1) + Ml )« (B:33)

where ?KV := min {l, /cz}. Then, integrating (3.33) from O to t € (0, T'], we obtain

t
P 1012 ) + /0 (2olul, g, +2v 0l ) ds
t t
< [ IR ds+ Py O3+ / Il . ds, (3.34)
/0 H 1 (2) Kv H'(2) 0 H'(2)

which, together with the Gronwall inequality and the fact that u(0) = u,, yields (3.31). Notice that, in
order to simplify the stability bound, we have neglected the positive term fé ||u||£/) @) ds in the left-hand
side of (3.34), which also explains why the constant Cyy,. in (3.31) does not depend on F.

The aforementioned uniqueness of (2.19) is now provided. In fact, let u; = (w;, w;), with i € {1,2},
be two solutions corresponding to the same data. Then, taking (2.19) withv =u; —u, € K x L%(2),
subtracting the problems, we deduce that

% 3t (||u1 — u2||i2(g) + K2 ”V(ul - u2)||]1242(9))
+[A@) @) — A@p)@y), u; —u,] = —[e(u; —uy)(W,y),1; —w,].

Then, using similar arguments to (3.18), the definition of the operator A(z) (cf. (2.13)), the identity (3.8),
(3.21), and the continuity bound of ¢(z) (cf. (3.7)), we get

Yxv

2

2

oy llu, 2,

2 2
— Uyl ) DIy — ol )+ 0y — @y

< gyl gy oy = w5 - (3.35)
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16 S. CAUCAO AND I. YOTOV

with Y.y as in (3.33). Integrating in time (3.35) from O to ¢ € (0, 7], using the fact that ||u||Loo(0’TAHI @)
is bounded by data (cf. (3.31)) in conjunction with the Gronwall inequality and algebraic manipulations,
we obtain

t
1) = Ol g, + [ (I =l g+ oy =0l ) s
< Cexp(T) [l (0) = Ol -

with C > 0 depending on v, D, «, |lis || and data. Therefore, recalling that u; (0) = u,(0), it follows that
u(t) =u,(?) and @ (1) = w,(?) forall r € (0, T].

Finally, since Theorem 3.1 implies that M (u) € L*°(0, T;E,;), we can take t — 0 in all equations
without time derivatives in (2.19). Using that the initial data u, = (u, @) satisfies the same equations
at t = 0 (cf. (3.26)), and that u(0) = u,, we obtain

V(@(0) —wp¥)g =0 V¥ e L2(82). (3.36)

Thus, taking ¥ = @(0) — w, in (3.36) we deduce that w(0) = w, = curl(u,), completing the proof. [

We conclude this section by establishing the well-posedness and stability bounds for the solution of
problem (2.11).

TreoreM 3.10. For each f € W1 O, T, H_l(Q)) and u, € K, there exists a unique solution of (2.11),
W,p) = (Ww),p) :[0,T] — (H)(£2) x L?(£2)) x L3(£2) withu € W'>(0, T; H ' (£2)) and u(0) =
u,. In addition, w(0) = w, = curl(u,) and there holds the stability bound (3.31) with the same constant
Cyyy only, depending on v,D and k. Moreover, there exists a constant Cyy,, > 0 only, depending on
|£2], ||ip||, liyll,v,D,F,« and B, such that

Jj—1 2
IPlizorizey = Cap | 2 (Voo (Iflorm-e) + Wollwa) | + Mol

jel2.3.0)
(3.37)

Proof. We begin by recalling from Lemma 2.1 that the problems (2.11) and (2.19) are equivalent. Thus,
the well-posedness of (2.11) follows from Theorem 3.9.

On the other hand, to derive (3.31) and (3.37), we first choose v = u and ¢ = p in (2.11) to deduce
(3.32)—(3.34) and consequently (3.31) also holds for the problem (2.11). In turn, starting from the inf-
sup condition of B (cf. (2.20)), and then employing the first equation of (2.11) related to v, the stability
bounds of F, & (cf. (3.3), (3.4)), the definition of A(z) (cf. (2.13)), and the continuous injections of
H' (£2) into L4(.Q) and L”(£2), with p € [3,4], we deduce that

[F, (v,0)] — [9, E(w), (v,0)] — [A(u)(w), (v,0)]
B ||P||L2(_Q) =< sup

0£veH) (2) IVlig ()

=< ”f”H—l(g) +D ”u”LZ(_Q) +v ”")”LZ(_Q)

2

+ gl gy o)

. —1
+E I Tl + 4+ €D 10, ulg g (3.38)
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 17

Then, taking square in (3.38) and integrating from O to ¢ € (0, 7], we deduce that there exits C; > 0,
depending on |£2], ||ip I, lligll, v, F, D, k and B, such that

t t
2 2 2 2
/O 12 ds < €, [ /0 (11 gy + 002 + 10022 ) i

t
4 2(p—1) 2
+ /0 (Il ) + T =+ oyl ) ds]. (3.39)

Next, in order to bound the last term in (3.39), we differentiate in time the equations of (2.11) related
to ¥ and ¢, choose (v,q) = ((J,u,®), p), use (2.6) in conjunction with Cauchy—Schwarz and Young’s
inequalities, to find that

! 3, (Dllul?,, . + 2F Il o + v @] + Vv 110, 0|2
2! L@, LA(£2) L2(22) Yev 10 Wl )

IA

(M1 + 112 Tl ) ) 18wl o

IA

7
Cy (I5-1 ) + Ml ) + 252 13, I g (3.40)

with Yy as in (3.33) and C, > 0 only, depending on ||is|| and «. Thus, integrating (3.40) from 0 to
t e (0,T], we get

2 2F 0 2 ~ ! 2
DIz g + > s o) + v I@®Il2 o) + Viv A 13, wllgr ) ds

<20, | (16131 ) + Ul ) ) ds +DIWOIZ, o) + 2E )1 g + v 10O
- 2 o H'(2) H' (2) L2(£2) 0 L (£2) L2(2)"
(341)

Combining (3.39) with (3.34) and (3.41), and using the fact that (u(0), w(0)) = (uy, ®y) and w, =
curl(uy) in £2 (cf. Lemma 3.8), we deduce that

t t
2 2 2 0
/O 1P1122,g, ds < Cs [ /0 19121, ds + g2 )+ TgE s g

t
2(p—1
+ /0 (Il ) + Ml gy + I ds] : (3.42)

with C3 > 0 only depending on |£2], ||ip I, lligll, v, F, D, k and B. Finally, using (3.31) to bound a2

H'(2)’
”u”;t-ll(rz) and ||u||f{(l’2;2;) in the left-hand side of (3.42), we obtain (3.37), concluding the proof. O
ReEMArk 3.2. Observe that (3.37) can be expanded to include a bound on ||8,u||Lz(0’T;H1 @) and
”w”Loo(O’T;LZ(Q)), using (3.41). We also note that (3.31) will be employed in the next section to deal
with the nonlinear terms associated to the operator A (cf. (2.13)), which is necessary to obtain the

corresponding error estimate.
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18 S. CAUCAO AND I. YOTOV

4. Semidiscrete continuous-in-time approximation

In this section, we introduce and analyze the semidiscrete continuous-in-time approximation of (2.11).
We analyze its solvability by employing the strategy developed in Section 3. Finally, we derive the error
estimates and obtain the corresponding rates of convergence.

4.1 Existence and uniqueness of a solution

Let 7, be a shape-regular triangulation of £2 consisting of triangles K (when d = 2) or tetrahedra K
(when d = 3) of diameter /g, and define the mesh-size & := max {hK 'K € 7;:} Let (H“,Hﬁ) be a
pair of stable Stokes elements satisfying the discrete inf-sup condition: there exists a constant 84 > 0,

independent of A, such that
/ q, div(vy)
Je

= ﬂd “q;,”LZ(Q) VC]h S HZ “.1)
0#£v,cH} ”Vh”Hl(Q)

We refer the reader to Boffi et al. (2013) and Brezzi & Fortin (1991) for examples of stable Stokes
elements. To simplify the presentation, we focus on Taylor—-Hood (Taylor & Hood, 1973) finite elements
for velocity and pressure, and continuous piecewise polynomials spaces for vorticity. Given an integer
I > 0 and a subset S of R?, we denote by P,(S) the space of polynomials of total degree at most / defined
on S. For any k > 1, we consider:

HY = [vh e [CEDN: vyl € [P (K VK e 7;1} NHL($2).,

HY :={g, € C(2): q,lx € Py(K) VK eT,} NL3(R), 4.2)
HY = [wh € [CED)@D2: g1 € [PV vK e 7;,]

It is well known that the pair (H}, Hﬁ) in (4.2) satisfies (4.1) (cf. Boffi, 1994). We observe that similarly to
Anaya et al. (2021) and Anaya et al. (2023), we can also consider discontinuous piecewise polynomials
spaces for the vorticity, that is,

HY = {wh e [LA(@)144=D/2 1 g | € [PLK)Y@ D2 VK e Th}.

In addition to the Taylor—Hood elements for the velocity and pressure, in the numerical experiments in
Section 6 we also consider the classical MINI-element (Boffi er al., 2013, Sections 8.4.2, 8.6 and 8.7)
and Crouzeix—Raviart elements with tangential jump penalization (see Crouzeix & Raviart, 1973 for the
discrete inf-sup condition regarding the lowest-order case and, for instance, Carstensen & Sauter, 2022
for cubic order).

Now, defining u, = (w,,w;),v, = (v, ¥),) € H;l‘ X HZ) the semidiscrete continuous-in-time
problem associated with (2.11) reads: Find (u,,,p;):[0,7] — (H}l‘ X H‘;,’) X H‘Z such that, for a.e. r €
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 19

0,7),
d
37 [€ (W, (), ¥,] + [A (w, () @, (0), ¥, ] + [B(,), p (D] = [F(0),¥,] Yy, € Hy x Hy,

~[B(u, (1), q,] =0 Vg, € H). (4.3)

Here, A, (z;): (Hz X H‘,;’) — (Hg X Hf)/ is the discrete version of A(z) (with z € Hj in place of
z € H)(£2)), which is defined by

[Ah(zh)(gh),zh] = [a(uy),v,] + [c,(z,)(w,),V,], 4.4)

where ¢,(z;,) is the well-known skew-symmetric convection form (Temam, 1977):

r .
[c,(z,) (W), v,] = ((Vuy)z,,v,) o + 5 (div(zy)uy,, v;,) o,
for all u, v;,z, € Hj). Observe that integrating by parts, similarly to (3.8), there holds
[c,(z;)(v;,),v,1=0 Vz, e H) and Vy, € H x Hy. 4.5)

As initial condition we take (w,, 5, pj, o) = (0,0, @), ), Pj ) to be a suitable approximations of (wy, py) =
((ug, wg), 0), the solution of a slight modification of (3.30), that is, we chose (Eh,o’ Ph,o)’ solving

(Vuy, 0, VVy) o + [A, (w, 0) (W, 0). ¥, 1 + [B' (9 0), ¥, ] = [F, v,1+ (Vug, Vvy) g, (4.6)
~[B,o).q;,] =0, '

for all v, € Hj x Hy and g;, € HZ The well-posedness of (4.6) follows from the discrete inf-sup
condition (4.15) and similar arguments to the proof of Lemma 3.7. Alternatively, we can proceed as in
Anaya et al. (2023, eq. (4.4)) and apply a fixed-point strategy in conjunction with Caucao et al. (2021,
Theorem 3.1) to ensure existence and uniqueness of (4.6).

Next, we introduce the discrete kernel of 3, that is,

V, =K, xHy, where K, = {Vh e Hj : (¢;.div(v,))o, =0 Vg, € HZ} 4.7)

Then, we can introduce the reduced problem: Given f: [0, T] — H! (£2), find u,: [0, T] — K, x Hﬁ
such that, for a.e. r € (0,7),

a
37 [€ @, (1)), ¥,] + [A, (w, () (@, (1), ¥,] = [F(0),¥,] Yy, € K, x Hy, (4.8)

which, using (4.1) and similarly to Lemma 2.1, is equivalent to (4.3). As a preliminary initial condition
for (4.8) we take u;, 5 := (w5, @ () to be solution of the reduced problem associated to (4.6), that is,
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20 S. CAUCAO AND 1. YOTOV

we chose w;, , solving
(Vuy,0, Vv o + [A, (W, 0) (W, 0), v, 1 = [Fo, v, 1 + (Vuy, Vv, o Vy, € K, x Hy, 4.9)
with Fy € H 1(2) x {0} being the right-hand side of (3.28). Notice that the well-posedness of problem

(4.9) follows from similar arguments to those employed in the proof of Lemma 3.7. In addition, taking
v, = W, in (4.9), we deduce from the definition of the operator A, (uy, 5) (cf. (4.4)), the identity (4.5),

and the continuity bound of F, (cf. (3.29)), that there exists a constant 60 > (, depending only on |£2],
i, II, lligll, v, D and F, and hence independent of /, such that

— 2(p—1
193012 ) + 10kl o) + @002 = Co {I80]2s ) + 0ol ) + N0l ] 410)
Thus, from (4.9), we deduce an initial condition for (4.8), that is, o= (“h,o’ "’h,o)’ the solution of
[Ah(uh,o)(gh,o),!h] = [Fh,o’Xh] Vv, € K, x H}, 4.11)

with F;, o = (£,0,0) and (£, 5, v,) o = (£, ¥,) o + (Vuy, Vvy) o — (Vu, 5, Vv,) o, which, thanks to
(3.29) and (4.10), yields

2 —1
|0 ¥el = Cao {100l i) + 190l o) + U0l | Vil o (4.12)

with Cy3y > 0, depending only on [£2], ||ip||, ligll, v, D and F. Thus, F,, € H () x {0}. We
observe that this choice is necessary to guarantee that the discrete initial data is compatible in the sense
of Lemma 3.8, which is needed for the application of Theorem 3.1.

In this way, the well-posedness of (4.8) (equivalently of (4.3)), follows analogously to its continuous
counterpart provided in Theorem 3.9. More precisely, we first address the discrete counterparts of
Lemmas 3.3 and 3.4, whose proofs, being almost verbatim of the continuous ones, are omitted.

Lemma 4.1. Let z;, € K, (cf. (4.7)). Then, with the same constant y, defined in (3.17), there holds
(€ + Ay @) (%), Y] = View IValigp ) + ¥ 1T 2 - (4.13)
and

(€ + A () (W) = (€ + Ay (@) (%)), 0, = V] = Yy 14 = Villggs ) + v 10y = ¥4l -
(4.14)

for all w, = (w,,®;), v, = (v, ¥,) € H} x HY. In addition, the operator £ + A,,: (H} x HY) —
(H}! x Hp)" is continuous in the sense of (3.14), but with the constant

: NZ A N
LKv’dzmaxIZ max{l + D, «?, v}, ||14||2(1+7 2P F i e, t

We continue with the discrete inf-sup condition of B.
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 21
LemMmA 4.2. It holds that

[B(vy), ;]
sup  —22 > B g l2g, V4, € HY, (4.15)
0£v,cHexhe 1Vl

where B is the inf-sup constant from (4.1).

Proof. The statement follows directly from (4.1). (I

We are now in a position to establish the semi-discrete continuous in time analogue of Theorems 3.9
and 3.10. To that end, we first introduce the ball of K;, given by

1
Wy = [Zh €K, : ”Zh”Hl(_Q) = _”f”]-rl(g) . (4.16)
Ykv

The aforementioned result is stated now.

Treorem 4.3. For each compatible initial data (w,, o, pj,0) = (0,0, ®,0),pp0) satisfying (4.11) and
f e W“(O, T, H_l(SZ)), there exists a unique solution to (4.3), (w,,p,) = ((w,,;),p,) :[0,T] —
(Hj x HY) x HZ, withu, € w0, T; H}) and (u,,(0), ®,,(0)) = (u,,, @, o). Moreover, there exists a
constant 6Kvl, > 0, depending only on |§2], [li, I, llis|l, v. D, F and «, such that

||“h||L°°(0,T;H1(.Q)) + ||“h||L2(o,T;L2(Q)) + ||“’h||L2(0,T;L2(Q))

- 2 p—1
< Cyyr vVexp(T) (”f”Lz(o’T;H*l(g)) + ”uo”Hl(_Q) + ”u()”Hl(_Q) + ”uOHHl(SZ))’ 4.17)
and a constant a{vp > 0, depending only on [§2[, [li, ||, lig]l, v, D, F, « and B4, such that

gl 2 (0,T;L%(£2))

o 2 R
< Cop > VD (182001 0y + W0l ) + 18012 ) + 100l o )}
Jje(2,3,0}
(4.18)

Proof. According to Lemma 4.1, the discrete inf-sup condition for 13 provided by (4.15) in Lemma 4.2,
a fixed-point approach as the one used in Lemma 3.7, but now with W4 (cf. (4.16)), and considering
that (Eh,o’ Ph,o) satisfies (4.11), the proof of existence and uniqueness of solution of (4.8) (equivalently
of (4.3)) withu,, € w0, T; H}) and u;,(0) = u,, o, follows similarly to the proof of Theorem 3.9 by
applying Theorem 3.1. Moreover, from the discrete version of (3.36), we deduce that @, (0) = @, .

On the other hand, mimicking the steps followed in the proof of Theorems 3.9 and 3.10, we
obtain, respectively, the discrete versions of (3.32)—(3.34) and (3.38)—(3.41). Then, using the fact that
(1;,(0), @, (0)) = (uy,, ;) and (4.10), we derive (4.17) and (4.18), thus completing the proof. [l
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22 S. CAUCAO AND 1. YOTOV

4.2 Error analysis

Now we derive suitable error estimates for the semidiscrete scheme (4.3). To that end, we first recall that
the discrete inf-sup condition of B (cf. (4.15)), along with a classical result on mixed methods (see, e.g.,
Gatica, 2014, eq. (2.89) in Theorem 2.6) ensure the existence of a constant C > 0, independent of A,
such that:

inf lu—y, [l <C inf Ju—y,l. (4.19)

V€V v, H} <Hy
Next, in order to obtain the theoretical rates of convergence for the discrete scheme (4.3), we recall the
approximation properties of the finite element subspaces Hj}, H? and Hz (cf. (4.2)) that can be found in
Brezzi & Fortin (1991), Ern & Guermond (2004) and Boffi e al. (2013). Assume thatu € H't(2),w €

[H*(£2)]19@=D/2 and p € H*(£2), for some s € (1/2,k + 1]. Then there exists C > 0, independent of &,
such that

inf |lu—v < Ch'|u 5o, 4.20
vycH? ” h”Hl(_Q) = I ”HH (£2) ( )
inf o —¥,lli20) < Ch ll@lgsg) (4.21)
yreny rIL2(2) HY ()
inf 1p = glliz) < CF 1Pl (4.22)

thHh

Owing to (4.19) and (4.20)—(4.22), it follows that, under an extra regularity assumption on the exact
solution, there exist positive constants C(u), C(3,w), C(p) and C(9,p), depending on u,w and p,
respectively, such that

IA

inf |lu—v
Jof lu — v, ll

Cwh’, inf [[d,u—v,ll < C@w)h’,
!hEVh
(4.23)

IA

inf lp—qylli2) < CP)A and inf 113, p =gyl 2y < C@p) K.
gneHy, qneHy,

In turn, in order to simplify the subsequent analysis, we write e, = (e,,¢,) = (u —u,,® — ®;,) and

e, = p — pj,. Next, given arbitrary v, == (V) ;ﬁ\h): [0,T] — V,, (cf. (4.7)) and G, : [0, T] — HY, as usual,
we shall decompose the errors into

e, =8 + 1y = (8,,8,) + (N, 1,), €, =8,+1,, (4.24)

with
SUZU—Vh, 6“):(0_%]1, szp_/q\h’
(4.25)

~

M=V =W N, =V, —@p 1,=4,—p

In addition, we stress for later use that for each v, : [0,T] — V,, (cf. (4.7)) it holds that 9, v, (t) € V.
In fact, given (v;, q;) : [0,T] = V, x HZ, after simple algebraic computations, we obtain

[B(a,zh),qh] = 0, ([B(Xh),qh]) - [B(Xh),atqh] =0, (4.26)

where, the latter is obtained by observing that 9, g, (f) € HZ
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 23

Finally, since the exact solution u € H(l)(.Q) satisfies div(u) = 0 in £2, we have
[A,(w@),v,] = [Aw)(),y,] Vv, € Hf x Hy.

In this way, by subtracting the discrete and continuous problems (2.11) and (4.3), respectively, we obtain
the following error system:

]
37 [5(65),!;1] + [Ap ) @) — Ay () (w), v, ] + [B(zh),ep] =0 Vy,eH} xHp,

[Bey.a,]=0  vg,eH,. @2

We now establish the main result of this section, namely, the theoretical rate of convergence of the
semidiscrete scheme (4.3). Note that optimal rates of convergences are obtained for all the unknowns.

TheorEM 4.4. Let ((u,®),p) : [0,T] — (H{(2) x L2(2)) x L3(2) withu € W0, T;H ' (£2))
and ((u, ), p,):[0, 7] — (HY x H?) x H) with u, € W*°(0, T; H}) be the unique solutions of the
continuous and semidiscrete problems (2.11) and (4.3), respectively. Assume further that there exists s €
(1/2,k+ 1], such thatu € H'*¥(2), @ € [H*(£2)]99D/2 and p € H*(£2). Then, there exists C(u, p) >
0, depending only on C(u), C(9,w), C(p), C(9, p), ||ip I, ligll, 182],v,D, F, k, By, T, ”f”LZ(O,T;H_](.Q)) and
”“0||H1(9)’ such that

lewll oo rmt (2 T leullizo 122y + 1€ullizo i)

+ eyl 2z < Cp) (1 +mC7D). (4.28)

Proof. First, adding and subtracting suitable terms in the first equation of (4.27), with vy, = 75, =
(M 1y) 1 [0, T] = V,, (cf. (4.7)), and using the decomposition B
[-Ah(u)(g) - Ah(uh) (wy), 772] = [Ah(uh)@h) - -Ah(uh)(ﬂh), '79] + [Ah(“)(g) - Ah(u)@h), 712]

+ [e(u—wy) (), n,] + [e, (W (ny), ny] — [ () (ny), 1yl (4.29)

where the last two terms can be neglected thanks to the identity (4.5), proceeding as in (4.14) to bound

the first term in the right-hand side of (4.29), and using the definitions of the operators £ and B (cf.
(2.12), (2.16)), together with the fact that ng(t) €V, thus [B(ng), np] = 0, we deduce that

1
50 (Imal2 ) + €21V IE2 0)) + D 1mullE2 ) + F Co 1mallf gy + v 110l g,

< =08y M) — K (3,V8,, Vi) g — LA, @) — A, F,), n,]
— [ey(m —w) (W), 0,1+ (3, div(n,)) - (4.30)
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24 S. CAUCAO AND 1. YOTOV

The terms on the right-hand side can be bounded using the Cauchy—Schwarz, Holder and Young’s
inequalities (cf. (1.1)), (3.14), as follows:

|I3t3u||

max{l,Kz}
— ( (4.31)

— @du, 1) — €2 (B Vbu, Vg < o Ml o)
— [A, (@@ — A, (W) (¥), 1]
= C {1+ 1wl o) + 100 = 90 ) 18uli ) + 180y | (Ml ) + Mol 2y )

= C (14 Tl o + T2+ 18500 ) I8ulr oy + 10l 2y | (1Ml ey + ol )

= C (14 1013 ) + IR ) 1802 ) + 1850 + 18012 ) )
+ (Il gy + 5 MalZz ) )- 432)
— e, (u — w)(w,). 7,1 < (1 + %Zl) i gl ) (18l o) + a2 ) 1l o
= G luyllgr oy (18ullZ o) + 1l ) (4.33)
(3, div(ny)g < v 5 (18,12 g+ Imalys ) (434)

where C;,C, > 0 depend on ||i4]|, ||ip||,K, D, F and v. We note that in (4.32), we used the continuous
injection of Hl(Q) into L”(£2), with p € [3,4], cf. (1.2). Combining (4.30)—(4.34), and neglecting the
term ||11u||£,o @) in (4.30) to simplify the error estimate, we obtain

0 (11220 + €212y ) + DIl ) + v 10012

2(p—-2
= Cy (10, 80l21 ) + (14 103l ) + 1003 ) + IR 2) 1812 )
2(p—1
18l o)+ 0822 ) + 18,12 ) + (1 gl o)) 1l ) - (439)

with C; a positive constant, depending on [£2], [[i4l], ||ip||, v,D, F and k. Integrating (4.35) from O to
t € (0, T], recalling that ||u||Loo(0’T.HI @) and ||uh||Loo(0,T;Hl (22)) are bounded by data (cf. (3.31), (4.17)),
we find that

t
2 2 2 2
112012 o) + /0 (Il ) + 1101225 ) ds = € [ / (10, 8412 ) + 18,1%) ds
t t
[y 18, 0,) ]+ C | [, 05+ OB | @30

with C4,64 > 0 depending on [£2], [ligl, li,ll, v, D, F, k and data.
On the other hand, to estimate lle,ll;2 O.T12(2)) We observe that from the discrete inf-sup condition
of B (cf. (4.15)), the first equation of (4.27), and the continuity bounds of B,&, 4, (cf. (3.2), (3.4),
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 25

(3.14)), there holds

Ballmol 2o < sup — ([0 E(ew), v4] + [Ap ) (w) — Ap(up) (W), v;,1 + [B(vy), 8p])
P = oty ent e A

-2 -2
= € (Ioreullyg g + (1+ Nl g + Il + T0nl7 % ) Heulgg g + w2 + 18l 2(c)) -

with C > 0 depending on [2], [liyll, [li,|l, v, D, F and «. Then, taking square in the above inequality,
integrating from O to # € (0, T, using again the fact that ||u||Loo(0,T;H1(_Q)) and ||uh||Loo(O’T;H1(Q)) are
bounded by data (cf. (3.31), (4.17)) and employing (4.36), we deduce that

t t
2 2 2 2(p—1) 2
/O 19,012, ds < Cs /0 (18, 8ulZs ) + 18I + 183 + 18,12, ) ) ds

t
+ Cs [/0 (Ilnullill(m + 119, nullill(m) ds + ”"u(o)”iv(g)]s 437

with C5,65 > 0 depending on [$2], [ligll, li,ll, v, D, F, B4,k and data.

Bounds on time derivatives
In order to bound the term |9, nu||H1(_Q) in (4.37), we differentiate in time the equation of (4.27)
related to ¥, and choose v, = (9,1,,7,,) to find that

. 1
min{ L} 10, Tl ) + 5 9 (D1MullF2 )+ 1101120

= - (at su’ at ”u).Q - K2 (az VSu’ at V”u)SZ —-D (au’ at ”u).Q - v(at 6(»’ nw).Q
— v(d,,curl(d,n,) o +v(n,,curl(9,8,)) o + (817’ div(9,m,) o
— F(lu)’"u — |u, "0, 9, 19) o — (Vwu — (Vu)uy, d,1,) ¢ (4.38)

Notice that (np, div(9,n,)) o = 0 since (9,(?),0) € V, (cf. (4.7) and (4.26)). In turn, using the Holder

inequality, the estimate (3.16) and the continuous injection of H'(£2) into L (£2), we deduce that there
exists a constant ¢ b > 0, depending on |£2| and p such that

A

_ _ -2
(20— [w, 1P 2wy, 8, 1) 0 < ¢, (Iullpe ) + Wl )” el @) 19l @)

-2
||eu||Hl(_Q) 19, ny “HI(Q)‘
4.39)

IA

. 1Y
& iy 17 (Il o) + Tl )

Similarly, but now adding and subtracting the term (Vu)u, (it also works with (Vu,)u), using the
continuous injection of H' (£2) into L* (£2), we obtain

(Vwu — (Vuy)u,, 9,9,) o

IA

(llvu||L2(Q)||eu”L4(Q) + ||uh||L4(Q)||Veu”]L2(Q)) ||8z77u||L4(_Q)

IA

||i4||2 (”u”H'(Q) + ”uh”Hl(Q)) ”eu”Hl(Q)”at ﬂu”Hl(Q)- (4.40)
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26 S. CAUCAO AND . YOTOV
Thus, integrating (4.38) from O to ¢ € (0, T, using the estimates (4.39) and (4.40), the Cauchy—Schwarz

and Young’s inequalities, and the fact that |Ju|l; « O.T:H! (2)) and [|uy [} « O.T:H! (2)) Are bounded by data
(cf. (3.31), (4.17)), in a way similar to (4.31)—(4.34), we find that

111200, + 10 Ol 2 + / 18, 1l ) A
< G (/ (10, 8417 + 18020 ) + 180122 ) + 18,122, ) ds
+ (||n ) + 101220, ) 5+ 1100122 ) + 110 (O) 12, (441
0 UiH' (£2) @TLA(£2) u L~(£2) @ L (2) )’

where Cgq > 0 depends on [£2], ||i4]|, ||ip II,v,D, F, k and data. Then, combining estimates (4.36), (4.37)
and (4.41), using the Gronwall inequality, and some algebraic manipulations, we deduce that

t
IO l3p ) + 162 g + /0 (Il ) + 10122 ) + 11022 + 10, 1 ) ) ds

t
< Gy exp(T) ( /0 (13, 8417 + 18,12 + 18,1500 + 18,12, ) s + ||nu<0>||2), (442)

with C; > 0 depending on |£2], |lizll, ||ip Il,v,D,F, B4, and data.

Bounds on initial data.
Finally, in order to bound the last term in (4.42), we subtract the continuous and discrete initial
condition problems (3.30) and (4.6) to obtain the error system:

(Vuy — Vuh’o, Vv o+ [Ah(uo)(ﬂo) - Ah(uh,()) (Hh,o)»Xh] + [B(v),), py — Ph,o] =0,
—[Buy —w,4),q,1 =0,

forall v, € Hj x Hy and g, € HZ. Then, proceeding as in (4.35), recalling from Theorems 3.9 and 4.3
that (u(0), @(0)) = (uy, ®y) and (u;,(0), ®,(0)) = (“h,o""h,o)’ respectively, we get

= 2(p—1
19212 )+ a2 ) = Co (184, 12+ 180, 500" + 18,12 5)) - 443)

where, similarly to (4.25), we denote 520 = (8, e wo) = (uy — v,(0), 0y — ah(O)) and Spo =py —

G, (0), with arbitrary (?h 0), @h(O)) € V, and g, (0) € Hh, and Co is a positive constant, depending on
|£21, [ligll, li ]I, v, D, F and «.
Thus, combining (4.42) with (4.43), and using the error decomposition (4.24), there holds

t
lew® 12 g, + /O (lewlZs o) + lleglZs o) + e la g ) ds < Gy exp(T) W(wp),  (444)
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 27

where

t
w(u,p) = 8,0+ /0 (||a,62||2+ 18,417 + 118,17~ + ||6,,||iz(m) ds

2 2(p-1) 2
18, 17+ 185 1270 4 118,15
with Cg > 0 depending on |£2], [li]l, ||ip l,v,D, F, B4, k and data. Finally, using the fact that v, : [0, T] —
V,andgq,:[0,7] — HZ are arbitrary, taking infimum in (4.44) over the corresponding discrete subspaces
V, and Hi, and applying the approximation properties (4.23), we derive (4.28) and conclude the
proof. ]

Remark 4.1. Observe that (4.28) can be expanded to include a bound on ||9, ell”Lz(O,T;H'(Q)) and
llegllp oo 0122y Using (4.42).

5. Fully discrete approximation

In this section we introduce and analyze a fully discrete approximation of (2.11) (cf. (4.3)). To that end,
for the time discretization we employ the backward Euler method. Let At be the time step, T = N At
and let t, = nAt,n = 0,..,N. Let du" = (A~ " — w" ") be the first order (backward) discrete
time derivative, where u” := u(t,). Then the fully discrete method reads: given " € H!(£2) and
W), p) = (0, @0),Pp0) satisfying (4.11), find (u},pf) = (W}, ®}).p}) € H) x HY) x H),
n=1,...,N, such that

d[Ey), v, ]+ [A,(u)) (W)), v, ] + [B(,).ppl = [F',v,] Vy, € Hf x HY,

—[B}). q,1=0 Vg € Hy, (S.1)

where [F",v,] := (f",v},) .
In what follows, given a separable Banach space V endowed with the norm || - ||y, we make use of
the following discrete in time norms:

N

2 ny 2 n
u o= At E u and u Ny = max |u . 5.2
” ”ﬁQ(O,T,V) . ” ”V ” ||[00((),T,V) 0<n<N ” ”V ( )
n=

We also recall the well-known identity:

1 1
it ) = 5 di il ) + 5 At 1T ) (5.3)
which follows from the definition of the discrete time derivative d,uj, = (AD~1 (u — u;l“]) and the

1
polarization identity (a — b,a) = (lal> — |b]> + |a — b|?), applied with a = u! and b = u}~'. In

addition, we state for later use the following discrete Gronwall inequality (Quarteroni & Valli, 1994,
Lemma 1.4.2):
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28 S. CAUCAO AND 1. YOTOV

Lemma 5.1. Let At > 0,B > O and let a,,, b, c,,d,,n > 0, be non-negative sequence such that ay < B
and

n n— n
= =1 I=

Then,

n n—1 n
bt A b = exp(mzczl)(mzc,w), .
=1 =1 =1

Next, we state the main results for method (5.1).

TheorEM 5.2. For each (u, p}) := ((w,, @), pj o) satisfying (4.6) and ' € H™'(2),n = 1,...,N,
there exist a unique solution (uj,py) = ((u}, ®}),py) € (H x HY) x HZ to (5.1), withn = 1,...,N.
Moreover, there exists a constant Cyy, > 0, depending only on [$21, [li, ||, llis|l, v, D, F and «, such that

Iyl oo 0,711 (29) T ANl 20, 710 (29) T 18Rlle2 0,702 (2)) F 1@l 20.7:0202))

< Cyyr vVexp(T) (”fHZZ(OTH L)) + ”uo”Hl(_Q) + ”u()”Hl(_Q) + ”uOHHl(.Q)) 5.4
and a constant EKVP > (0 depending only on |£2], ||ip I, lligll, v, D, F, k and B4, such that

PRl 20,7022y
o~ j_
< Cxwp Z {W (”f”lz(OTH_l(-Q)) + ol + ”uOHH @ " “uonHl(m)}
je{2,3,p}
(5.5)

Proof. Existence of a solution of the fully discrete problem (5.1) at each time step 7, n = 1, ..., N, can
be established by induction. In particular, assuming that a solution exists at ,_, existence of a solution
at ¢, follows from similar arguments to those employed in the proof of Lemma 3.7, using the discrete
inf-sup condition (4.15). We postpone the proof of uniqueness until after the stability bound.

The derivation of (5.4) and (5.5) can be obtained similarly as in the proof of Theorems 3.9 and 3.10,
respectively. In fact, we choose (v;,q,) = (u},p}) in (5.1), use the identity (5.3), the definition of the
operator A, (cf. (4.4)), the well-known inequality for dual norms: (f*,u}), < ||f"||H71(Q) IIUZIIHl(Q)
and Young’s inequality (cf. (1.1)), to obtain

1 1
5 (104132 ) + 2 IVUGIE ) ) + 5 A (||duh||Lz(_Q)+K AL

DI )+ F Iy + v 1010 = 5 (I8 g I g)) - 56)
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 29

Then, summing up over the time index n = 1,...,m, withm = 1, ..., N, in (5.6) and multiplying by At,
we get

m m
Pir 07120 ) + Tiew (A0% D N2 ) +2 A0 D" (DI, ) + v 1@} 122 ) )

n=1 n=1

m m
2 = 02 2
= ALY I 1 ) F P 100 ) + A7 D G2 (5.7)

n=1 n=1

with ?KV as in (3.33). Notice that, in order to simplify the stability bound, we have neglected the term
||uh||L,) @) in the left-hand side of (5.6). Thus, analogously to (3.34), applying the discrete Gronwall
1nequa11ty (cf. Lemma 5.1) in (5.7) and recalling that N At = T, and using the estimate (4.10), we
deduce the stability bound (5.4). Unlike its continuous counterpart (3.31), however, the constant E‘KVr
in (5.4) depends on F due to the use of (4.10).

On the other hand, from the discrete inf-sup condition of B (cf. (4.1)) and the first equation of (5.1)
related to v, we deduce the discrete version of (3.38), that is,

Ba ||ph||L2(Q) ||fn||H 1(2) +D ”uh”LZ(Q) +v ||wh||L2(_Q)
P n
+ gl IIUhIIHl(_Q) +F il ”uh”Hl(Q) + T+« )”d[uh”Hl(_Q)~ (5.8)
Then, squaring (5.8), summing up over the time index n = 1, ...,m, withm = 1, ..., N, and multiplying

by At, we deduce analogously to (3.39), that there exists C; > 0, depending on [§2], [lil, lli, [l v, D, F,
and B, such that

m
2
At Z P2 ) < { Z (||f"||H_1(m + il ) + 10 ”mm)

+ At

e

2(p—1
(I o + IR0+ (9))} (59

Next, in order to bound the last term in (5.9), we choose (v,,q,) = ((d,u},®}),p;) in (5.1), apply
some algebraic manipulation, use the identity (5.3) and the Cauchy—Schwarz and Young’s inequalities,
to obtain the discrete version of (3.40):

~ 1 1
P I3 )+ 5 o (DIWHIE )+ v 105122 ) ) + 5 At (D113 ) + v 1405172 )

_ . NZ|
+F (P 2ul, dul) o < (||f”||H-1(m+||l4||2(1+7 ||“h”H1<g> I,y ll gt

7
= C (I8 ) + 15 o)) + 5 N2 (5.10)
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30 S. CAUCAO AND 1. YOTOV

with 7, as in (3.33) and C, > 0, depending on |liy||, d and «. In turn, employing Holder and Young’s
inequalities, we are able to deduce (cf. Caucao et al., 2022, eq. (5.13)):

ANl
(=20, day g > 20

_ 1
(131 0 = 107" ) = S I o) (5.11)

Thus, combining (5.10) with (5.11), using Young’s inequality, summing up over the time index n =
1,...m,withm = 1,...,N and multiplying by At, we get the discrete version of (3.41):

DIyl g + ||u,, 1Ty + v 10712 ) + Vi At Z ld w13 o)

n=1

2F
<26, 4 Z(nt"u Syt Iy DI ) + = o) + v Nl g

n=1

(5.12)

Combining (5.9) with (5.7) and (5.12), using the fact that (u2, w2) = (“h,07 wh,o) and (4.10), we deduce
that

m
2(p—1
ALY P2 =€ [Ar DI )+ Mol ) + 10051 ) + W0t )

n=1

m
2(p—1
+ A0 D" (1012 g + 19 ) + ||u;:||HE‘;9)))] : (5.13)

n=1

withm = 1,...,N and C; > 0, depending on |2, lil, lli, I, v, D, F,k,d and B4. Then, using (5.4) to

oy IV Iy a0 IRILE - in the left-hand side of (5.13), we obtain (5.5).

Finally, uniqueness of the solution at each time step can be established using that [lu,[| ;o OTH'(2) is
bounded by data (cf. (5.4)), following the argument showing uniqueness of the weak solution in Theorem
3.9. In particular, starting from the time-discrete version of (3.35), the uniqueness follows from summing

in time and using the discrete Gronwall inequality (cf. Lemma 5.1). O

bound ||uh||

Now, we proceed with establishing rates of convergence for the fully discrete scheme (5.1). To that
end, we subtract the fully discrete problem (5.1) from the continuous counterparts (2.11) at each time
stepn = 1,...,N, to obtain the following error system:

d, 1€, v, ] + [A, @) ") — A, @) @), v, ] + [B,), €] = [, ), v,],
[B(el). g1 =0,

(5.14)

for all v, € H}! x H? and g;, € H,, where

[r,(W),v,] := (r,(w),v;) o + IS (r,(Vw), Vv;) o,
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 31

and r,, denotes the difference between the time derivative and its discrete analog, that is
r,(w) = d,u" —3,u(,).

In addition, we recall from Bukac et al. (2015, Lemma 4) that for sufficiently smooth u, there holds

N
At Z||rn(u)||f{,(m < C@,w (AD% with C@,u) = C||8,,u||iz(0,T;H,(Q)). (5.15)

n=1

Then, the proof of the theoretical rate of convergence of the fully discrete scheme (5.1) follows the
structure of the proof of Theorem 4.4, using discrete-in-time arguments as in the proof of Theorem 5.2,
the discrete Gronwall inequality (cf. Lemma 5.1) and the estimate (5.15) (see Caucao et al., 2022,
Theorem 5.4 for a similar approach).

THEOREM 5.3. Let the assumptions of Theorem 4.4 hold. Then, for the solution of the fully discrete
problem (5.1) there exists C(u,p) > 0, depending only on C(u), C(3,u), C(3,w), C(p), C(3,p), 82|,
”ip I, ligll,v,D, F,k, By, T, ”f”[Z(O’T;H—l(_Q)) and ”uo”Hl(_Q), such that

leullpoo 0,711 (2)) T AT s eull 20 711 (2)) T 1€ull 20,702 (52))

+ ”ew”£2(0’T;L2(Q)) + ”e[JHZZ(O,T;Lz(Q)) < G(E,P) (hb + hs (p=1) + A t) . (516)

REMARK 5.1. For the fully discrete scheme (5.1) we have considered the backward Euler method only for
the sake of simplicity. The analysis developed in Section 5 can be adapted to other time discretizations,
such as BDF schemes or the Crank—Nicholson method.

6. Numerical results

In this section, we present three numerical results that illustrate the performance of the fully discrete
method (5.1). The implementation is based on a FreeFEM code (Hecht, 2012). We use quasi-uniform
triangulations and the finite element subspaces detailed in Section 4.1 (cf. (4.2)). The nonlinearity is
handled using a Newton—Raphson algorithm with a fixed tolerance of tol = 1E—06. The iterative process
is stopped when the relative error between two consecutive iterations of the complete coefficient vector,
namely coeff” and coeff™t! ig sufficiently small, i.e.,

[|coeff™ 1 — coeff"|

1 = s
||C()effm+ ||D:F

where || - ||pop Stands for the usual Euclidean norm in RP°F, with DoF denoting the total number of

degrees of freedom defined by the finite element subspaces Hj, Hy’ and Hi: (cf. (4.2)).

Examples 1 and 2 are used to corroborate the rate of convergence in two- and three-dimensional
domains, respectively. The total simulation time for these examples is 7 = 0.001 and the time step is
At = 107*. The time step is sufficiently small, so that the time discretization error does not affect the
convergence rates. On the other hand, Example 3 is utilized to analyze the method’s behavior under
various scenarios, considering different Darcy and Forchheimer coefficients, as well as varying values
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Wh W”‘“” Py uf“"““

Fic. 1. [Example 1] Computed magnitude of the velocity, vorticity and pressure fields at time 7' = 0.001.

of the elasticity parameter k. For these cases, the total simulation time and the time step are chosen as
T =1and At= 1072, respectively.

6.1 Example 1: Two-dimensional smooth exact solution

In this test we study the convergence for the space discretization using an analytical solution. The domain
is the square £2 = (0, 1)2. We consider p =3,v =1,D=1,F = 10,x = 1, and the datum f is adjusted
so that the exact solution is given by the smooth functions:

u = exp(r) (_Slcr;(;z;)x;(;i(l?; ; )) and p = exp(?) cos(mrx) sin (?)
The model problem is then complemented with the appropriate Dirichlet boundary condition and
initial data.

In Fig. 1, we display the solution obtained with the Crouzeix—Raviart-based approximation, 39, 146
triangle elements and 176 926 DoF at time T = 0.001. Table 1 shows the convergence history for a
sequence of quasi-uniform mesh refinements, including the average number of Newton iterations. The
results confirm that the optimal spatial rates of convergence O (h**1) provided by Theorem 5.3 (see also
Theorem 4.4) are attained for the Taylor—Hood based scheme, with k = 1. In addition, optimal order
O(h) is also obtained for the MINI-element and Crouzeix—Raviart based discretizations. The Newton’s
method exhibits behavior independent of the mesh size, converging in 2.1 iterations in average in all
cases.

6.2 Example 2: Three-dimensional smooth exact solution
In the second example, we consider the cube domain £2 = (0, 1)3 and the exact solution
sin(7r x) cos(rr y) cos( z)

u = exp(r) | —2 cos(m x) sin(; y) cos(w 2) and p = exp(®) (x — 0.5)3 sin(y + z2).
cos (1 x) cos(r y) sin(7 )
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TaBLE 1  [Example 1] Number of degrees of freedom, mesh sizes, average number of Newton iterations,
errors, and rates of convergence with p =3,v=1,D=1,F=10andk = 1

Taylor-Hood-based discretization

leallp o, rm! (2)) leall 20,7122 lewlle20 0202y leplle2 0,712 (2))
DoF h iter error rate error rate error rate error rate
232 0.373 2.1  1.95E-01 - 2.03E-04 6.37E-03 3.76E-00

860 0.196 2.1  3.57E-02 2.653 1.80E-05 3.782 1.18E-03 2.636  5.15E-01 3.105
3216 0.097 2.1  8.69E-03 2.001 2.17E-06  2.998 2.90E-04 1.986  9.16E-02 2.448
12468  0.048 2.1 2.00E-03 2.074 2.51E-07  3.049 6.76E-05 2.058 1.42E-02 2.631
49142 0.025 2.1 5.21E-04 2.013 3.29E-08  3.042 1.78E-05 2.000 4.03E-03 1.888
197270  0.013 21  127E-04 2.160 3.94E-09  3.252  4.30E-06 2176  8.17E-04 2.447

MINI-element-based discretization

leull oo 0, 721! (2)) leull 20, 7:12(52)) lew 2002 (02) llepll 20,7122y
DoF h iter error rate error rate error rate error rate
180 0.373 2.1 1.22E-00 - 1.23E-03 9.50E-03 - 2.52E+01 —

676 0.196 2.1  6.62E-01 0.961 295E-04 2224 2.43E-03 2.132  6.37E-00 2.149
2548 0.097 2.1 3.30E-01 0.985 7.39E-05 1.962 8.68E-04 1.456  3.31E-00 0.925
9924 0.048 2.1  1.68E-01 0.957 1.87E-05 1.943 3.62E-04 1.236  1.50E-00 1.125
39212 0.025 2.1 847E-02 1.024  4.69E-06  2.068 1.70E-04 1.130  7.25E-01 1.084
157612 0.013 2.1  4.14E-02 1.098 1.15E-06 2162  7.52E-05 1.252 3.51E-01 1.110

Crouzeix—Raviart-based discretization

leull oo 0,721 (2 leall20,7:12(02)) e ll 20,702 (02)) llepll 20,7122y
DoF h i ter error rate error rate error rate error rate
187 0.373 2.1 7.59E-01 - 1.05E-03 - 1.45E-02 - 9.57E-00 -
733 0.196 2.1 3.87E-01 1.050 2.61E-04 2.170 4.82E-03 1.722  5.67E-00 0.819
2815 0.097 2.1 1.95E-01 0.974 6.59E-05 1.951 1.74E-03 1.447  3.04E-00 0.885

11065  0.048 2.1 9.86E-02 0.962 1.70E-05 1.918 7.61E-04 1.168  1.47E-00 1.023
43918  0.025 2.1 493E-02 1037 4.22E-06 2.083 3.75E-04 1.057 7.91E-01 0.930
176926 0.013 2.1 244E-02 1.081 1.03E-06  2.167 1.70E-04 1.219  3.76E-01 1.138

Similarly to the first example, we consider the parameters p = 4,v = 1,D=1,F = 10and x = 1, and
the right-hand side function f is computed from (2.3) using the above solution.

The numerical solution obtained with the Taylor—Hood-based approximation, 63, 888 tetrahedral
elements and 322 043 DoF at time 7 = 0.001 is shown in Fig. 2. The convergence history for a set of
quasi-uniform mesh refinements using Taylor—-Hood and MINI-element-based approximations is shown
in Table 2. Again, the mixed finite element method converges optimally with order O(h?) and O(h),
respectively, as it was proved by Theorem 5.3 (see also Theorem 4.4).

6.3 Example 3: Flow through porous media with channel network

Finally, inspired by Ambartsumyan ez al. (2019, Section 5.2.4), we focus on a flow through a porous
medium with a channel network. We consider the square domain £2 = (—1, 1)2 with an internal channel
network denoted as £2.. The domain configuration and the prescribed mesh are described in the plots

920z Asenuer iz uo Jasn ybingsiid 10 AlsioAun AQ 8297Z8/Z.0seIp/WNUBWI/SE0 L 0 |/10p/ajonie-aoueApe,/eulewl/woo dnoolwepese//:sdiy wWoly papeojumod



34 S. CAUCAO AND 1. YOTOV

TaBLE2 [Example 2] Number of degrees of freedom, mesh sizes, average number of Newton iterations,
errors, and rates of convergence with p =4,v =1,D=1,F=10andk = 1

Taylor—Hood-based discretization

leull oo 0 721! (2)) leull 20,712 (02) e ll 2071202 lepll 207022
DoF h iter error rate error rate error rate error rate
483 0.707 2.1 1.56E-00 2.76E-03 4.48E-02 - 6.44E+01

2687 0.354 2.1 4.36E-01 1.842 3.79E-04 2.869 1.33E-02 1.750  4.33E-00 3.895
17655  0.177 2.1 1.12E-01  1.956 4.89E-05 2.952 3.09E-03 2.106  2.75E-01 3.976
86667  0.101 2.1 3.69E-02 1.988 9.21E-06 2.984 9.83E-04 2.047  3.05E-02 3.930
322043 0.064 2.1 1.50E-02  1.996 2.38E-06 2.994 3.95E-04 2.019 5.21E-03 3.909

MINI-element-based discretization

leull gos 0,711 (2)) leull 20,712 (02) e ll 207202 lepll 20,7122
DoF h iter error rate error rate error rate error rate
333 0.707 2.1 7.55E-00 1.08E-02 6.97E-02 - 1.27E4+03

2027 0.354 2.1 4.53E-00 0.738 3.52E-03 1.615 2.36E-02 1.563  6.43E+402 0.986
14319 0.177 2.1 2.27E-00 0.999 8.77E-04 2.004 6.58E-03 1.842  1.87E+02 1.777
73017  0.101 2.1 1.29E-00 1.010 2.79E-04 2.046 2.32E-03 1.862  6.79E+01 1.812
276833 0.064 2.1 8.17E-01 1.007 1.12E-04 2.023 1.01E-03 1.848  3.02E+01 1.791

0.67 1.3
L LLULj (1L

i

2 0 3.1 6.2 9.3
s Wn | e

[y, | M

Fic. 2. [Example 2] Computed magnitude of the velocity and vorticity, and pressure field at time 7 = 0.001.

of the first column of Fig. 3. First, we consider the Kelvin—Voigt—-Brinkman—Forchheimer model (2.3)
in the whole domain §2, with parameters p = 3,v = 1 and ¥ = 1, but with different values of the
parameters D and F for the interior and the exterior of the channel, that is,

_ 1 in £, _ |10 in £,
D= [ 1000 in2\ @, 4 F= I I in2\Q, 6.

The parameter choice corresponds to high permeability (D = 1) in the channel and increased inertial
effect (F = 10), compared to low permeability (D = 1000) in the porous medium and reduced inertial
effect (F = 1). In addition, the body force term is f = 0, the initial condition is zero, and the boundaries
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0.11 0 28, 57. 85
P | s

002 021 =
[y | s ’ W,

Fic. 3. [Example 3] Domain configuration and prescribed mesh (plots in first column), and computed magnitude of the velocity,
vorticity and pressure field at time 7 = 0.01 (top plots), at time 7' = 0.2 (middle plots), and at time 7 = 1 (bottom plots).

conditions are

JVu
ot

u-n=02, u-t=0 on [y, (K2 —pI)n-l—th:O on I'\ I,

which corresponds to inflow on the left boundary and zero viscoelastic stress outflow on the rest of the
boundary.

In Fig. 3, we display the computed magnitude of the velocity, vorticity and pressure at times
T = 0.01, 0.2 and 1, which were obtained using the MINI-element-based approximation on a mesh with
27 287 triangle elements and 109 682 DoF. As expected, we observe a faster flow through the channel
network, accompanied by a significant change in vorticity across the interface between the channel
and the porous medium. The pressure field decreases as time increases. This example illustrates the
Kelvin—Voigt—Brinkman—Forchheimer model’s capability to handle heterogeneous media with spatially
varying parameters. It also demonstrates our three-field mixed finite element method’s ability to resolve
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Fic. 4. [Example 3] Computed magnitude of the velocity, vorticity and pressure field at time 7' = 1, with p = 3, channel setting
F = 10 and D = 1, and porous media setting F = 1 and D = 1000, for x € {3,2,1,0.1,0.01} (from left to right).

sharp vorticities in the presence of strong jump discontinuities in the parameters. We further study
the robustness of the method with respect to the elasticity parameter «. In Fig. 4 we display the
computed magnitude of the velocity, vorticity, and pressure for the settings given by (6.1), considering
k € {3,2,1,0.1,0.01}. We observe that the elasticity parameter « has a dissipative effect, reducing
the velocity in the channel and slightly affecting the pressure in the entire domain, while the vorticity
increases as k decreases. This study illustrates that the method produces stable and physically reasonable
results across a wide range of physical parameters, such as D, F and «.

7. Conclusions

In this paper, we presented a new velocity-vorticity-pressure formulation for the Kelvin—Voigt—Brink-
man-Forchheimer equations and its mixed finite element approximation. The system models fast
unsteady viscoelastic flows in highly porous media. The formulation has several advantages, including
an accurate and smooth approximation of the vorticity, well posedness for large data, and optimal
convergence rates without a mesh quasi-uniformity assumption. Well-posedness of the weak formulation,
as well as stability and error analysis for the semidiscrete and fully discrete mixed finite element
approximations are presented. The numerical results illustrate that the method is robust for a wide range
of parameters, the ability of the system to model heterogeneous media exhibiting both Stokes and Darcy
flow regimes, as well as the dissipative effect of the elasticity parameter. Future research directions

920z Asenuer iz uo Jasn ybingsiid 10 AlsioAun AQ 8297Z8/Z.0seIp/WNUBWI/SE0 L 0 |/10p/ajonie-aoueApe,/eulewl/woo dnoolwepese//:sdiy wWoly papeojumod



A MIXED FORMULATION FOR THE KVBF EQUATIONS 37

include the study of a pseudostress and skew-symmetric-based mixed formulation for the problem, along
with the use of Banach space techniques, as in Colmenares et al. (2020), Caucao et al. (2021) and Caucao
et al. (2022), to naturally impose the non-homogeneous Dirichlet boundary condition and to obtain direct
approximations of physical variables of interest, such as the velocity gradient and the viscoelastic stress
tensor.
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