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In this paper, we propose and analyze a mixed formulation for the Kelvin–Voigt–Brinkman–Forchheimer 
equations for unsteady viscoelastic flows in porous media. Besides the velocity and pressure, our approach 
introduces the vorticity as a further unknown. Consequently, we obtain a three-field mixed variational 
formulation, where the aforementioned variables are the main unknowns of the system. We establish 
the existence and uniqueness of a solution for the weak formulation, and derive the corresponding 
stability bounds, employing a fixed-point strategy, along with monotone operators theory and Schauder 
theorem. Afterwards, we introduce a semidiscrete continuous-in-time approximation based on stable 
Stokes elements for the velocity and pressure, and continuous or discontinuous piecewise polynomial 
spaces for the vorticity. Additionally, e mploying backward Euler time discretization, we introduce a
fully discrete finite element scheme. We prove well-posedness, derive stability bounds and establish
the corresponding error estimates for both schemes. We provide several numerical results verifying the
theoretical rates of convergence and illustrating the performance and flexibility of the method for a range
of domain configurations and model parameters.

Keywords : Kelvin–Voigt–Brinkman–Forchheimer equations; mixed finite element methods; velocity-
vorticity-pressure formulation. 

1. Introduction 

Fluid flows through porous media at high velocity occur in many industrial applications, such as 
environmental, chemical and petroleum engineering. For instance, in groundwater remediation and oil 
and gas extraction, the flow may be fast near injection or production wells or if the aquifer/reservoir is 
highly porous. Accurate modeling and simulation of such flows are imperative in these fields to optimize
processes, ensure safety and minimize environmental impact. Mathematical models have been developed
to address different aspects of these flows. The Forchheimer model (Forchheimer, 1901) addresses 
nonlinearities inherent in high velocity porous flow regimes. The Brinkman model (Brinkman, 1949) 
incorporates both viscous and permeability effects, enabling precise simulations of fluid movement in 
diverse environments, including highly porous media. On the other hand, many applications of interest
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2 S. CAUCAO AND I. YOTOV

involve flows of viscoelastic fluids through porous media, such as polymer injection and foam flooding 
in enhanced oil and gas recovery, blood perfusion through biological tissues, and industrial filters. The
Kelvin–Voigt model (Kalantarov & Titi, 2009) provides a fundamental framework for describing the 
viscoelastic behavior of fluids, capturing both viscosity and elasticity. The Kelvin–Voigt–Brinkman–
Forchheimer (KVBF) model (The Anh & Thi Trang, 2013), which generalizes and combines the 
advantages of the three models, is suitable for fast viscoelastic flows in highly porous media.

Concerning the literature, there are papers devoted to the mathematical analysis of the KVBF
equations (see, e.g., The Anh & Thi Trang, 2013; Su & Qin, 2018; Mohan, 2020, and references 
therein). In The Anh & Thi Trang (2013), the existence of a weak solution to the KVBF problem in 
velocity-pressure formulation is proved by using the Faedo–Galerkin method. In addition, existence, 
uniqueness and stability of a stationary solution is studied when the external force is time-independent
and small. Later on, the KVBF model with continuous delay is analyzed in Su & Qin (2018).  In  
particular, the authors demonstrate that, following the establishment of pullback-D absorbing sets 
for the continuous solution process, the asymptotic compactness obtained through the decomposition 
method leads to the existence of pullback-D attractors. Meanwhile, the existence and uniqueness of
a strong solution to the KVBF equations is obtained in Mohan (2020) by exploiting the m-accretive 
quantization of both the linear and nonlinear operators. Furthermore, the existence of an exponential 
attractor is established, along with a discussion concerning the inviscid limit of the 3D KVBF equations 
towards the 3D Navier–Stokes–Voigt system, and subsequently towards the simplified Bardina model. 
However, up to the authors’ knowledge, there is no literature focused on the numerical analysis of
the KVBF problem. On the other hand, several papers have been dedicated to the design and analysis
of numerical schemes for simulating the Brinkman–Forchheimer equations. In Louaked et al. (2015), 
the authors introduce and analyze a perturbed compressible system that serves as an approximation 
to the Brinkman–Forchheimer equations. They also develop a numerical method for this perturbed 
system, which relies on a semi-implicit Euler scheme for time discretization and employs the lowest-
order Raviart–Thomas elements for spatial discretization. A pressure stabilization finite element method
is developed in Louaked et al. (2017).  I  n Kou et al. (2019), a time-discrete scheme for a variable 
porosity Brinkman–Forchheimer model is applied for simulating wormhole propagation. In Caucao 
& Yotov (2021), a mixed formulation based on the pseudostress tensor and the velocity field is 
presented. By employing classical results on nonlinear monotone operators and a suitable regularization 
technique in Banach spaces, existence and uniqueness are proved. A fully discrete scheme is developed, 
which combines a finite element space discretization based on the Raviart–Thomas spaces for the
pseudostress tensor and discontinuous piecewise polynomial elements for the velocity with a backward
Euler time discretization. Sub-optimal error estimates are derived. These estimates are improved in
Caucao et al. (2022), where a three-field formulation including the velocity gradient is developed and 
analyzed. A staggered DG method for a velocity–velocity gradient–pressure formulation of the unsteady
Brinkman–Forchheimer problem is developed in Zhao et al. (2022). Well-posedness and error analysis 
are presented for the semi-discrete and fully discrete schemes. The method is robust with respect to
the Brinkman parameter. More recently, a vorticity-based mixed variational formulation is analyzed in
Anaya et al. (2023), where the velocity, vorticity and pressure are the main unknowns of the system. 
Existence and uniqueness of a weak solution, as well as stability bounds are derived by employing 
classical results on nonlinear monotone operators. A semidiscrete continuous-in-time mixed finite
element approximation and a fully discrete scheme are introduced and optimal rates of convergence are
established.

The purpose of the present work is to develop and analyze a new vorticity-based mixed formulation 
of the KVBF problem and to study a suitable conforming numerical discretization. To that end, unlike
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 3

previous KVBF works and motivated by Anaya et al. (2015), Anaya et al. (2021) and Anaya et al. 
(2023), we introduce the vorticity as an additional unknown besides the fluid velocity and pressure. In 
addition to the advantage of providing a direct, accurate, and smooth approximation of the vorticity ,
our approach gives optimal theoretical convergence rates without requiring any small data or quasi-
uniformity assumptions on the mesh. Furthermore, unlike Anaya et al. (2015), Anaya et al. (2021)
or Anaya et al. (2023), our method does not require any augmentation process. It is also important to 
mention that another nov elty and advantage of the present work is that it generalizes the model studied
in Anaya et al. (2023) by including the nonlinear convective term and an additional time-deriv ative term,
thus considering viscoelastic flows.

We establish the existence of a solution to the continuous weak formulation by employing tech-
niques from Showalter (1997), Caucao et al. (2021) and Caucao et al. (2023), combined with a 
fixed-point argument, the Browder–Minty theorem and the Schauder theorem. The uniqueness is 
achieved by contradiction arguments in conjunction with Grönwall’s inequality. Stability for the weak 
solution is established by means of an energy estimate. We further develop semidiscrete continuous-
in-time and fully discrete finite element approximations. We emphasize that our formulation relies 
on the natural H1–L2 spaces for the velocity-pressure pair, facilitating the use of classical stable 
Stokes elements such as the Taylor–Hood, Crouzeix–Raviart or MINI elements. Additionally, both 
continuous and discontinuous piece wise polynomial spaces can be utilized for discretizing the vor-
ticity. We make use of the backward Euler method for the discretization in time. Adapting the
tools employed for the analysis of the continuous problem, we prove well-posedness of the discrete
schemes and derive the corresponding stability estimates. We further perform error analysis for the
semidiscrete and fully discrete schemes, establishing optimal rates of convergence in space and
time.

We have organized the contents of this paper as follows. In Section 2 we describe the model problem 
of interest and develop the velocity-vorticity-pressure variational formulation. In Section 3,  we  show  
that it is well posed using a fixed-point strategy, along with monotone operators theory and the classical
Schauder theorem. Next, in Section 4 we present the semidiscrete continuous-in-time approximation, 
provide particular families of stable f inite elements, and obtain error estimates for the proposed methods.
Section 5 is devoted to the fully discrete approximation. The performance of the method is studied
in Section 6 with several numerical examples in 2D and 3D, verifying the aforementioned rates of 
convergence, as well as illustrating its fle xibility to handle spatially varying parameters in complex
geometries. The paper ends with conclusions in Section 7. 

In the remainder of this section, we introduce some standard notation and needed functional spaces. 
Let Ω ⊂ Rd, d ∈  {2, 3}, denote a domain with Lipschitz boundary Γ .  For  s  ≥ 0 and p ∈ [1, +∞], we 
denote by Lp(Ω) and Ws,p(Ω) the usual Lebesgue and Sobolev spaces endowed with the norms ‖·‖Lp(Ω) 
and ‖·‖Ws,p(Ω), respectively. Note that W0,p(Ω) = Lp(Ω). If p = 2, we write Hs(Ω) in place of Ws,2(Ω) 
and denote the corresponding norm by ‖·‖Hs(Ω).  By  H and H we will denote the corresponding vectorial 
and tensorial counterparts of a generic scalar functional space H. The L2(Ω) inner product for scalar, 
vector or tensor valued functions is denoted by (·, ·)Ω .  The L2(Γ ) inner product or duality pairing is
denoted by 〈·, ·〉Γ . Moreover, given a separable Banach space V endowed with the norm ‖ · ‖V, we let
Lp(0, T; V) be the space of classes of functions f : (0, T) → V that are Bochner measurable and such
that ‖f ‖Lp(0,T;V) < ∞, with

‖f ‖p 
Lp(0,T;V) :=

∫ T 

0
‖f (t)‖p 

V dt, ‖f ‖L∞(0,T;V) := ess sup 
t∈[0,T]

‖f (t)‖V.
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4 S. CAUCAO AND I. Y OTOV

In turn, for any vector field v := (vi)i=1,d, we set the gradient and divergence operators, as 

∇v :=
(

∂ vi 
∂ xj

)
i,j=1,d 

and div(v) := 
d∑

j=1 

∂ vj 
∂ xj 

.

In what follows, when no confusion arises, | · |  denotes the Euclidean norm in Rn or Rn×n. In addition, 
in the sequel, we will make use of the well-known Hölder inequality given by∫

Ω 
|f  g| ≤ ‖f ‖Lp(Ω) ‖g‖Lq(Ω) ∀ f ∈ Lp(Ω), ∀ g ∈ Lq(Ω), with 

1 
p 

+ 
1 
q

= 1,

and Young’s inequality, for a, b ≥ 0 and δ  >  0, 

a b  ≤ 
δp/2 

p 
ap + 

1 
q δq /2 b

q. (1.1)

Finally, we recall the continuous injection ip of H1(Ω) into Lp(Ω) for p ≥ 1 if d = 2 or p ∈ [1, 6] if
d = 3. More precisely, we have the following inequality:

‖w‖Lp(Ω) ≤ ‖ip‖ ‖w‖H1(Ω) ∀ w ∈ H1(Ω ), (1.2)

with ‖ip‖ > 0 depending only on |Ω| and p (see Quarteroni & Valli, 1994, Theorem 1.3.4).
We will denote by ip the vectorial version of ip.

2. The model problem and its velocity-v orticity-pressure formulation

Our model of interest is given by the Kelvin–Voigt–Brinkman–Forchheimer equations (see, e.g., The 
Anh & Thi Trang, 2013; Su & Qin, 2018; Mohan, 2020). More precisely, given the body force term f 
and a suitable initial data u0, the aforementioned system of equations is given by 

∂ u 
∂ t 

− κ2 ∂  Δu 
∂ t 

− ν  Δu + (∇u)u + Du + F |u|ρ−2u + ∇p = f,  div(u) = 0  in  Ω × (0, T], 

u = 0 on Γ × (0, T], u(0) = u0 in Ω , (p, 1) Ω = 0  in  ( 0, T], (2.1)

where the unknowns are the velocity field u and the scalar pressure p. In addition, the constant κ  >  0 
is a length scale parameter characterizing the elasticity of the fluid, ν > 0 is the Brinkman coefficient
(or the effective viscosity), D > 0 is the Darcy coefficient, F > 0 is the Forchheimer coefficient and
ρ ∈ [3, 4] is a given number.

We next introduce a new velocity-vorticity-pressure formulation for (2.1). To that end, we first define 
the trace operator γ ∗ and vorticity ω:

γ ∗(v) :=
{

v · t,  for  d = 2, 

v × n,  for  d = 3, 
and ω := curl(u) = 

⎧⎨⎩ 

∂ u2 
∂ x1

− ∂ u1

∂ x2
, for d = 2,

∇ × u, for d = 3.
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 5

Note that the curl of a two-dimensional vector field is a scalar, whereas the curl of a three-dimensional 
vector field is a vector. In order to avoid a multiplicity of notation, we nevertheless denote it like a 
vector, provided there is no confusion. In addition, in 2D, the curl of a scalar field q is a vector given by

curl(q) =
(

∂ q
∂ x2

, − ∂ q
∂ x1

)t
. Then, employing the well-known identity (Girault & Raviart, 1986, Section 

I.2.3) in conjunction with the incompressibility condition div(u) = 0  in  Ω × (0, T], we deduce that

curl(ω) = curl(curl(u)) = −Δu + ∇(div(u)) = −Δ u, (2.2)

from which we conclude that (2.1) can be equivalently rewritten as follows: Find (u, ω, p) in suitable
spaces to be indicated below such that

∂ u 
∂ t 

− κ2 ∂  Δu 
∂ t 

+ Du + F |u|ρ−2u + (∇u)u + ν curl(ω) + ∇p = f in Ω × (0, T], 

ω = curl(u),  div(u) = 0  in  Ω × (0, T], (2.3)

u = 0 on Γ × (0, T], u(0) = u0 in Ω , (p, 1)Ω = 0 in (0, T].

Next, multiplying the first equation of (2.3) by a suitable test function v, we obtain 

(∂t u, v)Ω − κ2(∂t Δu, v)Ω + D (u, v)Ω + F (|u|ρ−2u, v)Ω 

+ ((∇u)u, v)Ω + ν  (curl(ω), v)Ω + ( ∇p, v)Ω = (f, v)Ω , (2.4) 

where we use the notation ∂t := 
∂ 
∂ t

. Notice that the fourth and fifth terms in the left-hand side of

(2.4) require u to live in a smaller space than L2(Ω). In particular, by applying Cauchy–Schwarz and 
Hölder’s inequalities and then the continuous injection iρ (resp. i4)  of  H1(Ω) into Lρ (Ω) (resp. L4(Ω)), 
with ρ ∈ [3, 4], we find that∣∣∣(|u|ρ−2u, v)Ω

∣∣∣ ≤ ‖u‖ρ−1 
Lρ (Ω)

‖v‖Lρ (Ω) ≤ ‖iρ‖ρ ‖u‖ρ−1 
H1(Ω)

‖v‖H1(Ω) (2.5)

and ∣∣((∇u)z, v)Ω

∣∣ ≤ ‖∇u‖
L2(Ω) ‖z‖L4(Ω) ‖v‖L4(Ω) ≤ ‖i4‖2 ‖u‖H1(Ω) ‖z‖H1(Ω) ‖v‖H1(Ω), ( 2.6)

for all u, v, z ∈ H1(Ω), which, together with the Dirichlet boundary condition u = 0 on Γ (cf. (2.3)) 
suggest to look for the unknown u in H1 

0(Ω) and to restrict the set of corresponding test functions v to 
the same space. If a non-homogeneous condition of the form u = uD on Γ × (0, T] is prescribed, with 
boundary data uD satisfying 

∫
Γ

uD · n = 0 in (0, T], a suitable lifting approach must be employed to
ensure that both the velocity and its test functions belong to H1

0(Ω). Employing Green’s formula (Girault 
& Raviart, 1986, Theorem I.2.11), the sixth term in the left-hand side in (2.4) can be re written as

(curl(ω), v)Ω = (ω, curl(v))Ω −
〈
γ ∗(v), ω

〉
Γ = (ω, curl(v))Ω ∀ v ∈ H1

0(Ω). (2.7)
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6 S. CAUCAO AND I. Y OTOV

Thus, replacing back (2.7)  in  to (2.4), integrating by parts the terms (∂t Δu, v)Ω and (∇p, v)Ω , and
incorporating the second and third equations of (2.3) in a weak sense, we obtain the system 

(∂t u, v)Ω + κ2(∂t ∇u, ∇v)Ω + D (u, v)Ω + F (|u|ρ−2u, v)Ω 

+ ((∇u)u, v)Ω + ν  (ω, curl(v))Ω − (p, div( v))Ω = (f, v)Ω , (2.8) 

ν  (ω, ψ)Ω − ν  (ψ , curl( u))Ω = 0, (2.9)

(q, div(u))Ω = 0, (2.10) 

for all (v, ψ , q) ∈ H1 
0(Ω) × L2(Ω) × L2 

0(Ω), where L2 
0(Ω ) := {q ∈ L2(Ω) : (q, 1)Ω = 0

}
.

Next, in order to write the above formulation in a more suitable way for the analysis to be developed 
below, we set 

u := (u, ω) ∈ H1 
0(Ω) × L2(Ω),

with corresponding norm given by

‖v‖ = ‖(v, ψ)‖ :=
(
‖v‖2 

H1(Ω) + ‖ψ‖2 
L2(Ω)

)1/2 ∀ v := (v, ψ) ∈ H 10(Ω) × L2(Ω).

Hence, the weak form associated with the Kelvin–Voigt–Brinkman–Forchheimer equations (2.8)–(2.10) 
reads: Given f : [0, T] → H−1(Ω) and u0 ∈ H1 

0(Ω),  find  (u, p) : [0, T] → (
H1 

0(Ω) × L2(Ω)
)× L2 

0(Ω) 
such that u(0) = u0 and, for a.e. t ∈ (0, T), 

∂ 
∂ t 

[E(u(t)), v] + [A(u(t))(u(t)), v] + [B′(p(t)), v] = [F(t), v] ∀ v ∈ H1 
0(Ω) × L2(Ω), 

− [B(u(t)), q] = 0 ∀ q ∈ L2 
0(Ω ), (2.11)

where, given z ∈ H1 
0(Ω), the operators E ,A(z) :

(
H1 

0(Ω) × L2(Ω)
) → (

H1 
0(Ω) × L2(Ω)

)′
and B :(

H1
0(Ω) × L2(Ω)

)→ L2
0(Ω)′ are defined, respectively, as

[
E(u), v

]
:= (u, v)Ω + κ2 (∇u, ∇v)Ω , (2.12)[

A(z)(u), v
]

:= [
a(u), v

]+ [c(z)(u), v
]

, (2.13)

[
a(u), v

]
:=D (u, v)Ω + F (|u|ρ−2u, v)Ω + ν  (ω, ψ)Ω 

+ ν  (ω, curl(v))Ω − ν (ψ , curl(u))Ω , (2.14)[
c(z)(u), v

]
:= ((∇u)z, v)Ω , (2.15)[

B(v), q
]

:=  −  (q, div(v))Ω , (2.16)
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 7

and F ∈ (H1 
0(Ω) × L2(Ω))′ is the bounded linear functional given by 

[F, v]  := (f, v)Ω . (2.17) 

In all the terms above, [·, ·] denotes the duality pairing induced by the corresponding operators. In 
addition, we let B′ :  L2 

0(Ω) → (
H1 

0(Ω) × L2(Ω)
)′

be the adjoint of B, which satisfies [B′(q), v] =
[B(v), q] for all v = (v, ψ) ∈ H1

0(Ω) × L2(Ω) and q ∈ L2
0(Ω).

Now we define the kernel space of the operator B, 

V :=
{

v = (v, ψ) ∈ H1 
0(Ω) × L2(Ω) :  [B(v), q] = 0 ∀ q ∈ L2 

0(Ω )
}

, 

which f rom the definition of the operator B (cf. (2.16)) can be rewritten as 

V = K × L2(Ω), where K :=
{

v ∈ H1 
0(Ω) :  div(v) = 0  in  Ω 

}
. (2.18) 

This leads us to the reduced problem: Given f :  [0, T] → H−1(Ω) and u0 ∈ K,  find  u : [0, T] → 
K × L2(Ω) such that u(0) = u0 and, for a.e. t ∈ (0, T),

∂ 
∂ t 

[E(u(t)), v] + [A(u(t))(u(t)), v] = [F(t), v] ∀ v ∈ K × L2(Ω). (2.19)

According to the definition of K (cf. (2.18)), owing to the inf-sup condition of B (cf. Ern & Guermond, 
2004, Corollary B.71): 

sup 
0�=v∈H1 

0(Ω)×L2(Ω) 

[B(v), q]

‖v‖ ≥ sup 
0�=v∈H1 

0(Ω)

∫
Ω 

q div(v)

‖v‖H1(Ω) 
≥ β ‖q‖L2(Ω) ∀ q ∈ L2 

0(Ω) , (2.20) 

with β  >  0, and using standard arguments, it is not difficult to show that the problem (2.19) is equivalent 
to (2.11). This result is stated next and the proof is omitted.

LEMMA 2.1. If (u, p) : [0, T] → (
H1 

0(Ω) × L2(Ω)
)× L2 

0(Ω) is a solution of (2.11), then u : [0, T] → K 
and u = (u, ω) is a solution of (2.19). Conversely, if u : [0, T] → K×L2(Ω) is a solution of (2.19), then 
there exists a unique p : [0, T] → L2 

0(Ω) such that (u, p) is a solution of (2.11). 

3. Well-posedness of t he model

In this section, we establish the solvability of (2.19) (equivalently of (2.11)). To that end, we first collect 
some previous results that will be used in the forthcoming analysis.

3.1 Preliminary r esults

We begin by recalling a key result, which will be used to establish the existence of a solution to (2.19). 
In what follows, an operator A from a real vector space E to its algebraic dual E′ is symmetric and
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8 S. CAUCAO AND I. YOTOV

monotone if, respectively, 

[A(x), y] = [A(y), x] and [A(x) − A(y), x − y] ≥ 0 ∀ x, y ∈ E . 

In addition, Rg(A) denotes the range of A and a dual space with a seminorm is the space of linear 
functionals on a vector space that are continuous with respect to the seminorm. The following theorem
is a slight simplification of Showalter (1997, Theorem IV .6.1(b)).

THEOREM 3.1. Let the linear, symmetric and monotone operator N be given from the real vector space 
E to its algebraic dual E′, and let E′

b be the Hilbert space which is the dual of E with the seminorm 

|x|b = [N (x), x]1/2 x ∈ E . 

Let M : E → E′
b be an operator with domain D = {

x ∈ E :M(x) ∈ E′
b 
}
. Assume that M is monotone

and Rg(N + M) = E′
b. Then, for each f ∈ W1,1(0, T; E′

b) and for each u0 ∈ D, there is a solution u of

∂ 
∂ t 

(N (u(t))) + M (u(t)) = f (t) a.e. 0 < t < T , (3.1)

with

N (u) ∈ W1,∞(0, T; E′
b), u(t) ∈ D, for all 0 ≤ t ≤ T and N (u (0)) = N (u0).

For the proof of the range condition in Theorem 3.1 we will utilize the Bro wder–Minty theorem
(Ciarlet, 2013, Theorem 9.14-1) stated below.

THEOREM 3.2. Let V be a real separable reflexive Banach space and let A :  V  → V′ be a coercive and 
hemicontinuous monotone operator. Then A is surjective, i.e., given any f ∈ V′ there exists u such that

u ∈ V and A(u) = f .

If A is strictly monotone, then A is also injective.

We recall that an operator A is hemicontinuous if, for each u, v, w ∈ V , the real-valued function t �→ 
[A(u + t v), w] is continuous. In particular, if A is continuous, then it is hemicontinuous. Additionally, 
A is strictly monotone if [A(u) − A(v), u − v] > 0 for all u �= v in V and A is strongly monotone if
there exists a constant c > 0 such that

[A(u) − A(v), u − v] ≥ c ‖u − v‖2 
V ∀ u , v ∈ V .

It is clear that strong monotonicity implies strict monotonicity.
Next, we establish the stability properties of the operators involved in (2.11). We begin by observing 

that the operators E ,B and the functional F are linear. In turn, from (2.12), (2.16) and (2.17), and
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 9

employing Hölder and Cauchy–Schwarz inequalities, there hold

∣∣[B(v), q]
∣∣ ≤ 

√
d ‖v‖ ‖q‖L2(Ω) ∀ (v, q) ∈

(
H1 

0(Ω) × L2(Ω)
)

× L2 
0(Ω), (3.2)

∣∣[F, v]
∣∣ ≤ ‖f‖H−1(Ω) ‖v‖H1(Ω) ≤ ‖f‖H−1(Ω) ‖v‖ ∀ v ∈ H1 

0(Ω) × L2(Ω ), (3.3)

and

∣∣[E(u), v]
∣∣ ≤ max{1, κ2} ‖u‖ ‖v‖,  [E(v), v] ≥ min{1, κ2} ‖v‖2 

H1(Ω) ∀ u, v ∈ H1 
0(Ω) × L2(Ω), 

(3.4)

which implies that B and F are bounded and continuous, and E is bounded, continuous, and monotone.
On the other hand, given z ∈ H1 

0(Ω), it is readily seen the nonlinear operator A(z) (cf. (2.13)) is 
bounded. More precisely, employing the Cauchy–Schwarz inequality, (2.5), and (2.6), we obtain

∣∣[A(z)(u), v]
∣∣

= ∣∣D (u, v)Ω + F (|u|ρ−2u, v)Ω + ν  (ω, ψ)Ω + ν  (ω, curl(v))Ω − ν  (ψ , curl(u))Ω + ((∇u)z, v)Ω

∣∣
≤ CA

{(
1 + ‖z‖H1(Ω)

)
‖u‖H1(Ω) + ‖u‖ρ−1 

H 1(Ω) + ‖ω‖L2(Ω)

}
‖v‖, ( 3.5)

with CA > 0 depending on D,F, ν, ‖i4‖ and ‖iρ‖. In addition, using similar arguments to (2.6), it is not 
difficult to see that the operator c(z) (cf. (2.15)) satisfies

∣∣[c(z)(u1 − u2), v]
∣∣ ≤ ‖z‖L4(Ω) ‖u1 − u2‖H1(Ω) ‖v‖L4(Ω) 

≤ ‖i4‖2 ‖z‖H1(Ω) ‖u1 − u2‖ ‖v‖ ∀ z ∈ H1 
0(Ω), ∀ u1, u2, v ∈ H1 

0(Ω) × L2(Ω), (3.6)

and

∣∣[c(z1 − z2)(u), v]
∣∣ ≤ ‖z1 − z2‖L4(Ω) ‖u‖H1(Ω) ‖v‖L4(Ω) 

≤ ‖i4‖2 ‖z1 − z2‖H1(Ω) ‖u‖ ‖v‖ ∀ z1, z2 ∈ H1 
0(Ω), ∀ u, v ∈ H1 

0 (Ω) × L2(Ω). ( 3.7)

In turn, observe that for any z ∈ K (cf. (2.18)), there holds 

[c(z)(v), v] = 0 ∀ v ∈ H1 
0(Ω) × L 2(Ω). (3.8)

Finally, given u ∈ K (cf. (2.18)) and recalling the definition of the operators E and A(u) (cf. (2.12), 
(2.13)), we note that problem (2.19) can be written in the form of (3.1) with 

E := K × L2(Ω), u := u = (u, ω), N := E , M := A(u). (3.9)
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10 S. CAUCAO AND I. Y OTOV

Let E′
b be the Hilbert space that is the dual of K × L2(Ω) with the seminorm induced by the operator E

(cf. (2.12)), which thanks to the fact that κ  >  0, is given by

‖v‖E :=
{
(v, v)Ω + κ2 (∇v, ∇v)Ω

}1/2 ≡ ‖v‖H1(Ω) ∀ v = (v, ψ) ∈ H1 
0(Ω) × L2(Ω) .

Then we define the spaces

E′
b := H−1(Ω) × {0}, D :=

{
u ∈ K × L2(Ω) : M(u) ∈ E′

b

}
. (3.10)

In the next section we prove the hypotheses of Theorem 3.1 to establish the well-posedness of (2.19). 

3.2 Range condition 

We begin with the verification of the range condition in Theorem 3.1. Let us consider the resolv ent
system associated with (2.19): Find u = (u, ω) ∈ K × L2(Ω) such that 

[(E + A(u))(u), v] = [̂F, v] ∀ v ∈ K × L2(Ω), (3.11) 

where F̂ ∈ H−1(Ω)×{0} is a functional given by F̂(v) := (̂f, v)Ω for some f̂ ∈ H−1(Ω). In the follo wing
two sections we prove that (3.11) has a solution by employing a suitable fixed-point approach.

3.2.1 A fixed-point strategy. Let us define the operator J :K → K by 

J (z) := u ∀ z ∈ K, (3.12) 

where u is the f irst component of the solution of the partially linearized version of problem (3.11): Find 
u = (u, ω) ∈ K × L2(Ω) such that

[(E + A(z))(u), v] = [̂F, v] ∀ v ∈ K × L2 (Ω). (3.13)

It is clear that u = (u, ω) ∈ K × L2(Ω) is a solution of problem (3.11) if and only if J (u) = u.  In  
this way, to establish existence of solution of (3.11) it suffices to prove that J has a fixed-point in K.

Before proceeding with the solvability analysis of (3.11), we first establish the well-definiteness 
of the fixed-point operator J . To that end, in what follo ws we prove the hypothesis of the Browder–
Minty theorem (cf. Theorem 3.2) applied to the problem (3.13). We begin by observing that, thanks to 
the reflexivity and separability of L2(Ω),  it  follows  that  H1 

0(Ω), L2(Ω) and L2
0(Ω) are reflexive and

separable as well.
We continue by establishing a continuity bound of the nonlinear operator E + A(z).

LEMMA 3.3. Let z ∈ K. Then, there exists LKV > 0, depending on D,F, ν, κ , ρ, ‖iρ‖, ‖i4‖ and |Ω|, such 
that

‖(E + A(z))(u) − (E + A(z))(v)‖
≤ LKV

{(
1 + ‖z‖H1(Ω) + ‖u‖ρ−2 

H1(Ω) + ‖v‖ρ−2 
H1(Ω)

)
‖u − v‖H1(Ω) + ‖ω − ψ ‖L2(Ω)

}
, (3.14)

for all u = (u, ω), v = (v, ψ) ∈ K × L2(Ω).
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 11

Proof. Let z ∈ K and let u = (u, ω), v = (v, ψ), w = (w, φ) ∈ K × L2(Ω ). From the definition of
the operators E ,A(z) (cf. (2.12), (2.13)), using the continuity bounds (3.4) and (3.6), and the Hölder and 
Cauchy–Schwarz inequalities, we deduce that 

[(E + A(z))(u) − (E + A(z))(v), w] ≤ F
∥∥|u|ρ−2u − |v|ρ−2v

∥∥
Lυ (Ω)

‖w‖Lρ (Ω) 

+ 2  max
{
1 + D, κ2, ν

} ‖u − v‖ ‖w‖ + ‖i4‖2 ‖z‖H1(Ω) ‖u − v‖H1(Ω) ‖w‖, ( 3.15) 

with υ ∈ [4/3, 3 /2] and 1/ρ + 1/υ = 1. In turn, using Barrett & Liu (1993, Lemma 2.1, eq. (2.1a)) 
and the continuous injection iρ of H1(Ω) into Lρ(Ω) (cf. (1.2)), we deduce that there exists a constant 
cρ > 0, depending only on |Ω| and ρ, such that

∥∥|u|ρ−2u − |v|ρ−2v
∥∥

Lυ (Ω)
‖w‖Lρ (Ω) ≤ cρ

(‖u‖Lρ (Ω) + ‖v‖Lρ (Ω)

)ρ−2 ‖u − v‖Lρ (Ω) ‖w‖Lρ (Ω) 

≤ 2ρ−3 cρ ‖iρ‖ρ
(
‖u‖ρ−2 

H1(Ω) + ‖v‖ρ−2 
H1(Ω)

)
‖u − v‖H1(Ω) ‖w‖H1(Ω). (3.16)

Then, replacing back (3.16)  in  to (3.15), and after simple computations, we obtain (3.14) with 

LKV = max
{

2  max{1 + D, κ2, ν}, ‖i4‖2, 2ρ−3 F ‖iρ‖ρ cρ

}
.

�
We continue our analysis by proving the coercivity and strong monotonicity of the nonlinear operator 

E + A(z) (cf. (2.12), (2.13)). 

LEMMA 3.4. Let z ∈ K (cf. (2.18)). Then, there exists γKV > 0, depending only on D and κ , such that 

[(E + A(z))(v), v] ≥ γKV ‖v‖2 
H1(Ω) + ν ‖ψ‖2 

L 2(Ω) , (3.17) 

and 

[(E + A(z))(u) − (E + A(z))(v), u − v] ≥ γKV ‖u − v‖2 
H1(Ω) + ν ‖ω − ψ‖2 

L2(Ω) , (3.18) 

for all u = (u, ω), v = (v, ψ) ∈ K × L2(Ω).

Proof. Let z ∈ K and let u = (u, ω), v = (v, ψ) ∈ K×L2(Ω). Then, from the definition of the operators
E ,A(z) (cf. (2.12), (2.13)) and the identity (3.8), we deduce that 

[(E + A(z))(v), v] = [E(v), v] + [a(v), v] + [c(z)(v), v] 

= (1 + D) ‖v‖2 
L2(Ω) + κ2 ‖∇v‖2 

L2(Ω) + F ‖v‖ρ 
Lρ (Ω ) + ν ‖ψ‖2 

L2(Ω) , (3.19) 

which, together with the fact that the term F ‖v ‖ρ

Lρ(Ω)
on the right-hand side of (3.19), which is positive, 

can be neglected, yields (3.17) with γKV := min{1 + D, κ2}.
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12 S. CAUCAO AND I. YOTOV

On the other hand, proceeding as in (3.19) and using the fact that E and c(z) are linear, we get

[(E + A(z))(u) − (E + A(z))(v), u − v] = (1 + D) ‖u − v‖2 
L2(Ω) + κ2 ‖∇(u − v)‖2 

L2(Ω) 

+ F (|u|ρ−2u − |v|ρ−2v, u − v)Ω + ν ‖ω − ψ‖2
L2(Ω)

. (3.20)

Thanks to (Barrett & Liu, 1993, Lemma 2.1, eq. (2.1b)), we know that there exists a constant Cρ > 0, 
depending only on |Ω| and ρ, such that

(
|u|ρ−2u − |v|ρ−2v, u − v

)
Ω 

≥ Cρ ‖u − v‖ρ 
Lρ (Ω) > 0 ∀ u, v ∈ Lρ(Ω). (3.21)

Thus, (3.20) yields (3.18) with the same constant γKV as in (3.17). �

LEMMA 3.5. The operator J : K → K introduced in (3.12) is well defined. In particular, for each z ∈ K, 
there exists a unique solution u = (u, ω) ∈ K × L2(Ω) to (3.13) and J (z) = u. Moreover,

‖u‖H1(Ω) ≤ 
1 

γKV
‖̂f‖H−1(Ω) . (3.22)

Proof. Let z ∈ K. Owing to the continuity, coercivity and strong monotonicity of the operator E +A(z)
(cf. Lemmas 3.3 and 3.4), the well-posedness of (3.13) is a direct consequence of the Browder–Minty
theorem (cf. Theorem 3.2). This is clearly equivalent to the existence of a unique u ∈ K, s uch that
J (z) = u. Moreover, (3.22) follows readily by testing (3.13) with v = u and using the coercivity bound 
of E + A(z) (cf. (3.17)) and the continuity bound of F̂ (cf. (3.3)). �

We next derive a continuity bound for the operator J .

LEMMA 3.6. For all z1, z2 ∈ K, there holds

‖J (z1) − J (z2)‖H1(Ω) ≤ ‖i4‖
γ 2 
KV

‖̂f‖H−1(Ω) ‖z1 − z2‖L 4(Ω). (3.23)

Proof. Given z1, z2 ∈ K,  we  let  u1 = J (z1) and u2 = J (z2). According to the definition of J (cf.
(3.12)–(3.13)), it follows that 

[(E + A(z1))(u1) − (E + A(z2))(u2), v] = 0 ∀ v ∈ K × L2(Ω) . 

Taking v = u1 − u2 in the above system, and recalling the definition of E ,A(z) (cf. (2.12), (2.13)), as 
well as subtracting and adding the term [c(z1)(u2), u1 − u2] in order to rewrite [A(z2)(u2), u1 − u2]  as  
[A(z1)(u2), u1 − u2] − [c(z1 − z2)(u2), u1 − u2], we obtain the identity

[(E + A(z1))(u1) − (E + A(z1))(u2), u1 − u2] =  −[c(z1 − z2)(u2), u1 − u2]. (3.24)
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Hence, using the strong monotonicity of E + A(z) (cf. (3.18)) and the continuity bound of c (cf. (3.7)), 
we deduce that 

γKV ‖u1 − u2‖2 
H1(Ω) ≤ ‖i4‖ ‖u2‖H1(Ω) ‖z1 − z2‖L4(Ω) ‖u1 − u2‖H1(Ω), 

which, together with (3.22), implies (3.23). �

3.2.2 Solvability analysis of the fixed-point equation. Having proved the well-posedness of the
problem (3.13), which ensures that the operator J is well defined, we now aim to establish existence of a 
fixed point of the operator J . For this purpose, in what follows we verify the hypothesis of the Schauder
fixed-point theorem in a suitable closed set.

Let W be the bounded and convex set defined by 

W :=
{

z ∈ K : ‖z‖H1(Ω) ≤ 
1 

γKV
‖̂f‖H−1(Ω)

}
. (3.25) 

The following lemma establishes the existence of a fixed point of J by means of the Schauder fixed
point theorem.

LEMMA 3.7. Let W be defined as in (3.25). Then the operator J has at least one fixed-point in W , that
is, the resolvent system (3.11) has a solution u = (u, ω) ∈ W × L2(Ω).

Proof. Given z ∈ W, we first recall from Lemma 3.5 that J is well defined and there exists a unique u ∈ 
K such that J (z) = u, which together with (3.22) implies that u ∈ W and proves that J (W) ⊆ W. Next,  
we observe from estimate (3.23) that J is continuous. In addition, using again (3.23), the compactness 
of the injection i4 : H1(Ω) → L4(Ω) (see, e.g., Quarteroni & V alli, 1994, Theorem 1.3.5), and the 
well-known fact that every bounded sequence in a Hilbert space has a weakly convergent subsequence, 
we deduce that J (W) is compact. Then, using the Schauder fixed point theorem written in the form
(Ciarlet, 2013, Theorem 9.12-1(b)), we conclude that the operator J has at least one fixed-point in W, 
that is, there exists u = (u, ω) ∈ W × L2(Ω) a solution to (3.11). �

3.3 Construction of compatible initial data

Now, we establish a suitable initial condition result, which is necessary to apply Theorem 3.1 to the 
context of (2.19). 

LEMMA 3.8. Assume the initial condition u0 ∈ K (cf. (2.18)). Then, there exists ω0 ∈ L2(Ω) such that 
u0 = (u0, ω0) and

A(u0)(u0) ∈ H−1(Ω) × {0}. (3.26)

Proof. We proceed as in Anaya et al. (2023, Lemma 3.7). In fact, we define ω0 := curl(u0), with u0 ∈ K
(cf. (2.18)). It follows that ω0 ∈ L2(Ω). In addition, using (2.2), we get 

ν curl(ω0) =  −ν  Δu0 in Ω . (3.27)
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14 S. CAUCAO AND I. Y OTOV

Next, multiplying the identities (3.27) and ν  (ω0 − curl(u0)) = 0 by v ∈ H1 
0(Ω) and ψ ∈ L2(Ω),

respectively, integrating by parts as in (2.7), and after minor algebraic manipulation, we obtain 

[A(u0)(u0), v] = [F0, v] ∀ v ∈ H1 
0(Ω) × L2(Ω), (3.28) 

with F0 = (f0, 0) and 

(f0, v)Ω := ν  (∇u0, ∇v)Ω +
(
Du0 + F |u0|ρ−2u0 + (∇u0)u0, v

)
Ω 

, 

which together with the continuous injection of H1(Ω ) into L4(Ω) and Lρ(Ω), with ρ ∈ [3, 4], cf. (1.2), 
implies that ∣∣(f0, v)Ω

∣∣ ≤ C0

{
‖u0‖H1(Ω) + ‖u0‖2 

H1(Ω) + ‖u0‖ρ−1 
H1(Ω)

}
‖v‖H1 (Ω), (3.29) 

with C0 := max
{
ν +D,F ‖iρ‖ρ , ‖i4‖2

}
. Thus, F0 ∈ H−1(Ω)×{0} so then (3.26) holds, completing the 

proof. �

REMARK 3.1. The assumption on the initial condition u0 ∈ K (cf. (2.18)) is less restrictive than the one
employed in Anaya et al. (2023, Lemma 3.7) (see also Caucao & Y otov, 2021, Lemma 3.6, Caucao 
et al., 2022, Lemma 3.7 and Djoko & Razafimandimby, 2014, eq. (2.2)) for the analysis of the unsteady 
Brinkman–Forchheimer problem since the datum f0 is now in H− 1(Ω) instead of L2(Ω). Note also that
u0 satisfying (3.26) is not unique. In addition, (u0, p0) = ((u0, curl(u0)), 0) can be chosen as initial
condition for (2.11), that is, (u0, p0 ) satisfy

[A(u0)(u0), v] + [B′(p0), v] = [F0, v] ∀ v ∈ H1 
0(Ω) × L2(Ω), (3.30a) 

− [B(u0), q] = 0 ∀ q ∈ L2
0(Ω). (3.30b)

3.4 Main r esult

We now establish the well-posedness and stability bounds for the solution of problem (2.19). 

THEOREM 3.9. For each compatible initial data u0 = (u0, ω0) constructed as in Lemma 3.8 and each 
f ∈ W1,1(0, T; H−1(Ω)), there exists a unique solution of (2.19), u = (u, ω) : [0, T] → K × L2(Ω) with 
u ∈ W1,∞(0, T; H−1(Ω)) and u(0) = u0. In addition, ω(0) = ω0 = curl(u0) and there exists a constant
CKVr > 0 only, depending on ν,D and κ , such that

‖u‖L∞(0,T;H1(Ω)) + ‖u‖L2(0,T;L2(Ω)) + ‖ω‖L2(0,T;L2(Ω)) 

≤ CKVr

√
exp(T)

(
‖f‖L2(0,T;H−1(Ω)) + ‖u0‖H1(Ω )

)
. (3.31)

Proof. We recall that (2.19) fits the problem in Theorem 3.1 with the definitions (3.9) and (3.10). Note 
that N is linear, symmetric and monotone since E is (cf. (3.4)). In addition, since A(u) is strongly 
monotone for any u ∈ K, it follows that M is monotone. On the other hand, from Lemma 3.7 we know 
that, given (̂f, 0) ∈ E′

b, there exists u ∈ K × L2(Ω), such that (̂f, 0) = (N + M)(u), which implies
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Rg(N + M) = E′
b. Finally, considering u0 ∈ K, from a straightforward application of Lemma 3.8, 

we are able to find ω0 ∈ L2(Ω) such that u0 = (u0, ω0) ∈ D and (f0, 0) ∈ E′
b. Therefore, applying

Theorem 3.1 to our context, we conclude the existence of a solution u = (u, ω) to (2.19), with u ∈ 
W1,∞(0, T; H−1(Ω)) and u(0) = u0. 

We next show the stability bound (3.31), which will be used to prove that the solution of (2.19)  is  
unique. Indeed, to derive (3.31), we proceed as in Caucao & Yotov (2021, Theorem 3.3) and choose 
v = u in (2.19) to get 

1 
2 

∂t

(
‖u‖2 

L2(Ω) + κ2 ‖∇u‖2 
L2(Ω)

)
+ [A(u)(u), u] = (f , u)Ω . ( 3.32) 

Next, from the definition of the operators A(z) , a and c(z) (cf. (2.13), (2.14), (2.15)), employing similar 
arguments as in (3.17)  (c  f. (3.19)), particularly using the identity (3.8) to ensure that [c(u)(u), u] = 0, 
together with the well-known inequality for dual norms: (f, u)Ω ≤ ‖f‖H−1(Ω) ‖u‖H1(Ω) and Young’s 
inequality, we obtain

γ̂KV 

2 
∂t‖u‖2 

H1(Ω) + D ‖u‖2 
L2(Ω) + F ‖u‖ρ 

Lρ (Ω) + ν ‖ω‖2 
L2(Ω) ≤ 

1 
2

(
‖f‖2 

H −1(Ω)
+ ‖u‖2

H1(Ω)

)
, (3.33)

where γ̂KV := min
{
1, κ2

}
. Then, integrating (3.33)  from  0  to  t ∈ (0, T], we obtain

γ̂KV ‖u(t)‖2 
H1(Ω) +

∫ t 

0

(
2D ‖u‖2 

L2(Ω) + 2 ν ‖ω‖2 
L2(Ω)

)
ds 

≤
∫ t 

0
‖f‖2 

H−1(Ω) ds + γ̂KV ‖u(0)‖2 
H1(Ω) +

∫ t 

0 
‖u‖2 

H1(Ω) ds, (3.34)

which, together with the Grönwall inequality and the fact that u(0) = u0, yields (3.31). Notice that, in 
order to simplify the stability bound, we have neglected the positive term

∫ t 
0 ‖u‖ρ

Lρ(Ω)
ds in the left-hand

side of (3.34), which also explains why the constant CKVr in (3.31) does not depend on F. 
The aforementioned uniqueness of (2.19) is now provided. In fact, let ui = (ui, ωi), with i ∈ {1, 2}, 

be two solutions corresponding to the same data. Then, taking (2.19) with v = u1 − u2 ∈ K × L2(Ω), 
subtracting the problems, we deduce that

1 
2 ∂t

(
‖u1 − u2‖2 

L2(Ω) + κ2 ‖∇(u1 − u2)‖2 
L2(Ω)

)
+ [A(u1)(u1) − A(u1)(u2), u1 − u2] =  −[c(u1 − u2)( u2), u1 − u2].

Then, using similar arguments to (3.18), the definition of the operator A(z) (cf. (2.13)), the identity (3.8), 
(3.21), and the continuity bound of c(z) (cf. (3.7)), we get

γ̂KV 

2 
∂t‖u1 − u2‖2 

H1(Ω) + D ‖u1 − u2‖2 
L2(Ω) + ν ‖ω1 − ω2‖2 

L2(Ω) 

≤ ‖i4‖2‖u2‖H1(Ω)‖u1 − u2‖2
H1(Ω)

, (3.35)
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16 S. CAUCAO AND I. Y OTOV

with γ̂KV as in (3.33). Integrating in time (3.35)  from  0  to  t ∈ (0, T], using the fact that ‖u‖L∞( 0,T;H1(Ω))

is bounded by data (cf. (3.31)) in conjunction with the Grönwall inequality and algebraic manipulations, 
we obtain

‖u1(t) − u2(t)‖2 
H1(Ω) +

∫ t 

0

(
‖u1 − u2‖2 

L2(Ω) + ‖ω1 − ω2‖2 
L2(Ω)

)
ds 

≤ C exp(T) ‖u1(0) − u 2(0)‖2 
H1(Ω) ,

with C > 0 depending on ν,D, κ , ‖i4‖ and data. Therefore, recalling that u1(0) = u2(0),  it  follows  that  
u1(t) = u2(t) and ω1(t) = ω2(t) for all t ∈ (0, T].

Finally, since Theorem 3.1 implies that M(u) ∈ L∞(0, T; E′
b), we can take t → 0 in all equations

without time derivatives in (2.19). Using that the initial data u0 = (u0, ω0) satisfies the same equations
at t = 0 (cf. (3.26)), and that u(0) = u0, we obtain 

ν  (ω(0) − ω0, ψ)Ω = 0 ∀ ψ ∈ L2(Ω). (3.36) 

Thus, taking ψ = ω(0) − ω0 in (3.36) we deduce that ω(0) = ω0 = curl( u0), completing the proof. �
We conclude this section by establishing the well-posedness and stability bounds for the solution of

problem (2.11). 

THEOREM 3.10. For each f ∈ W1,1(0, T; H−1(Ω)) and u0 ∈ K, there exists a unique solution of (2.11), 
(u, p) = ((u, ω), p) : [0, T] → (

H1 
0(Ω) × L2(Ω)

)× L2 
0(Ω) with u ∈ W1,∞(0, T; H−1(Ω)) and u(0) = 

u0. In addition, ω(0) = ω0 = curl(u0) and there holds the stability bound (3.31) with the same constant 
CKVr only, depending on ν,D and κ . Moreover, there exists a constant CKVp > 0 only, depending on 
|Ω|, ‖iρ‖, ‖i4‖, ν,D,F, κ and β, such that

‖p‖L2(0,T;L2(Ω)) ≤ CKVp 

⎛⎝ ∑
j∈{2,3,ρ}

{√
exp(T)

(
‖f‖L2(0,T;H−1(Ω)) + ‖u0‖H1(Ω)

)}j−1 + ‖u0‖ρ/2 
Lρ (Ω )

⎞⎠.

(3.37)

Proof. We begin by recalling from Lemma 2.1 that the problems (2.11) and (2.19) are equivalent. Thus, 
the well-posedness of (2.11) follows from Theorem 3.9. 

On the other hand, to derive (3.31) and (3.37), we first choose v = u and q = p in (2.11) to deduce 
(3.32)–(3.34) and consequently (3.31) also holds for the problem (2.11). In turn, starting from the inf-
sup condition of B (cf. (2.20)), and then employing the first equation of (2.11) related to v, the stability 
bounds of F, E (cf. (3.3), (3.4)), the definition of A(z) (cf. (2.13)), and the continuous injections of 
H1(Ω) into L4(Ω) and Lρ (Ω ), with ρ ∈ [3, 4], we deduce that

β ‖p‖L2(Ω) ≤ sup 
0�=v∈H1 

0(Ω) 

[F, (v, 0)] − [∂t E(u), (v, 0)] − [A(u)(u), (v, 0)]

‖v‖H1(Ω) 

≤ ‖f‖H−1(Ω) + D ‖u‖L2(Ω) + ν ‖ω‖L2(Ω) 

+ ‖i4‖2 ‖u‖2 
H1(Ω) + F ‖iρ‖ρ ‖u‖ρ−1 

H1(Ω)
+ (1 + κ2) ‖∂t u‖H1(Ω). (3.38)
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 17

Then, taking square in (3.38) and integrating from 0 to t ∈ (0, T], we deduce that there exits C1 > 0, 
depending on |Ω|, ‖iρ‖, ‖i4‖, ν,F,D, κ and β, such that

∫ t 

0
‖p‖2 

L2(Ω) ds ≤ C1

{∫ t 

0

(
‖f‖2 

H−1(Ω) + ‖u‖2 
L2(Ω) + ‖ω‖2 

L2(Ω)

)
ds 

+
∫ t 

0

(
‖u‖4 

H1(Ω) + ‖u‖2 (ρ−1) 
H1(Ω) + ‖∂t u‖2

H1(Ω)

)
ds

}
. (3.39)

Next, in order to bound the last term in (3.39), we differentiate in time the equations of (2.11) related 
to ψ and q, choose (v, q) = ((∂t u, ω), p), use (2.6) in conjunction with Cauchy–Schwarz and Young’s 
inequalities, to find that

1 
2 

∂t

(
D ‖u‖2 

L2(Ω) + 
2F 

ρ
‖u‖ρ 

Lρ (Ω) + ν ‖ω‖2 
L2(Ω)

)
+ γ̂KV ‖∂t u‖2 

H1(Ω) 

≤
(
‖f‖H−1(Ω) + ‖i4‖2 ‖u‖2 

H1(Ω)

)
‖∂t u‖H1(Ω) 

≤ C2

(
‖f‖2 

H−1(Ω) + ‖u‖4 
H1(Ω )

)
+ γ̂KV

2
‖∂t u‖2

H1(Ω)
, (3.40)

with γ̂KV as in (3.33) and C2 > 0 only, depending on ‖i4‖ and κ . Thus, integrating (3.40)  from  0  to  
t ∈ ( 0, T], we get

D ‖u(t)‖2 
L2(Ω) + 

2F 

ρ
‖u(t)‖ρ 

Lρ (Ω) + ν ‖ω(t)‖2 
L2(Ω) + γ̂KV

∫ t 

0
‖∂t u‖2 

H1(Ω) ds 

≤ 2C2

∫ t 

0

(
‖f‖2 

H−1(Ω) + ‖u‖4 
H1(Ω)

)
ds + D ‖u(0)‖2 

L2(Ω) + 
2F 

ρ
‖u( 0)‖ρ

Lρ(Ω)
+ ν ‖ω(0)‖2

L2(Ω)
.

(3.41)

Combining (3.39) with (3.34) and (3.41), and using the fact that (u(0), ω(0)) = (u0, ω0) and ω 0 =
curl(u0) in Ω (cf. Lemma 3.8), we deduce that∫ t 

0
‖p‖2 

L2(Ω) ds ≤ C3

{∫ t 

0
‖f‖2 

H−1(Ω) ds + ‖u0‖2 
H1(Ω) + ‖u0‖ρ 

Lρ (Ω) 

+
∫ t 

0

(
‖u‖2 

H1(Ω) + ‖u‖4 
H1(Ω) + ‖u‖2 (ρ−1) 

H1(Ω)

)
ds

}
, (3.42)

with C3 > 0 only depending on |Ω|, ‖iρ‖, ‖i4‖, ν,F,D, κ and β. Finally, using (3.31) to bound ‖u‖2 
H1(Ω) ,

‖u‖4 
H1(Ω) and ‖u‖2 (ρ−1) 

H1(Ω)
in the left-hand side of (3.42), we obtain (3.37), concluding the proof. �

REMARK 3.2. Observe that (3.37) can be expanded to include a bound on ‖∂t u‖L2(0,T;H1(Ω)) and
‖ω‖L∞(0,T;L2(Ω)), using (3.41). We also note that (3.31) will be employed in the next section to deal 
with the nonlinear terms associated to the operator A (cf. (2.13)), which is necessary to obtain the
corresponding error estimate.
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18 S. CAUCAO AND I. YOTOV

4. Semidiscrete continuous-in-time appr oximation

In this section, we introduce and analyze the semidiscrete continuous-in-time approximation of (2.11). 
We analyze its solvability by employing the strategy developed in Section 3. Finally, we derive the error 
estimates and obtain the corresponding rates of convergence.

4.1 Existence and uniqueness of a solution

Let Th be a shape-regular triangulation of Ω consisting of triangles K (when d = 2) or tetrahedra K 
(when d = 3) of diameter hK , and define the mesh-size h := max

{
hK : K ∈ Th

}
.  Let  (Hu 

h , Hp
h) be a

pair of stable Stokes elements satisfying the discrete inf-sup condition: there exists a constant βd > 0,
independent of h, such that

sup 
0�=vh∈Hu 

h

∫
Ω 

qh div(vh)

‖vh‖H1(Ω) 
≥ βd ‖qh‖L2(Ω) ∀ qh ∈ Hp

h. (4.1)

We refer the reader to Boffi et al. (2013) and Brezzi & Fortin (1991) for examples of stable Stokes 
elements. To simplify the presentation, we focus on Taylor–Hood (Taylor & Hood, 1973) finite elements 
for velocity and pressure, and continuous piecewise polynomials spaces for vorticity. Given an integer 
l ≥ 0 and a subset S of Rd, we denote by Pl(S) the space of polynomials of total degree at most l defined
on S. For any k ≥ 1, we consider:

Hu 
h :=

{
vh ∈ [C(Ω)]d : vh|K ∈ [Pk+1(K)]d ∀ K ∈ Th

}
∩ H1 

0(Ω), 

Hp 
h :=

{
qh ∈ C(Ω) : qh|K ∈ Pk(K) ∀ K ∈ Th

} ∩ L2 
0(Ω), 

Hω 
h :=

{
ωh ∈ [C(Ω)]d(d−1)/2 : ωh|K ∈ [Pk(K)]d(d−1)/2 ∀ K ∈ Th

}
.

(4.2)

It is well known that the pair (Hu
h , Hp

h) in (4.2) satisfies (4.1) (cf. Boffi, 1994). We observe that similarly to 
Anaya et al. (2021) and Anaya et al. (2023), we can also consider discontinuous piecewise polynomials 
spaces for the vorticity, that is, 

Hω 
h :=

{
ωh ∈ [L2(Ω)]d(d−1)/2 : ωh|K ∈ [Pk(K)]d(d−1)/2 ∀ K ∈ Th 

}
. 

In addition to the Taylor–Hood elements for the velocity and pressure, in the numerical experiments in
Section 6 we also consider the classical MINI-element (Boffi et al., 2013, Sections 8.4.2, 8.6 and 8.7) 
and Crouzeix–Raviart elements with tangential jump penalization (see Crouzeix & Raviart, 1973 for the 
discrete inf-sup condition regarding the lowest-order case and, for instance, Carstensen & Sauter , 2022
for cubic order).

Now, defining uh := (uh, ωh), vh := (vh, ψh) ∈ Hu 
h × Hω

h , the semidiscrete continuous-in-time
problem associated with (2.11) reads: Find (uh, ph):[0, T] → (

Hu 
h × Hω 

h

) × Hp
h such that, for a.e. t ∈
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 19

(0, T), 

∂ 
∂ t 

[E(uh(t)), vh] + [Ah(uh(t))(uh(t)), vh] + [B(vh), ph(t)] = [F(t), vh] ∀ vh ∈ Hu 
h × Hω 

h , 

−[B(uh(t)), qh ] = 0 ∀ qh ∈ Hp 
h. (4.3) 

Here, Ah(zh) :
(
Hu 

h × Hω 
h

) → (
Hu 

h × Hω 
h

)′ is the discrete version of A(z) (with z ∈ Hu 
h in place of 

z ∈ H1 
0(Ω) ), which is defined by

[Ah(zh)(uh), vh]  := [a(uh), vh] + [ch(zh)(uh), vh], (4.4)

where ch(zh) is the well-known skew-symmetric convection form (Temam, 1977): 

[ch(zh)(uh), vh]  := ((∇uh)zh, vh)Ω + 
1 
2 

(div(zh)uh, vh)Ω , 

for all uh, vh, zh ∈ Hu 
h . Observe that integrating by parts, similarly to (3.8), there holds 

[ch(zh)(vh), vh] = 0 ∀ zh ∈ Hu 
h and ∀ vh ∈ Hu 

h × Hω 
h . (4.5) 

As initial condition we take (uh,0, ph,0) = ((uh,0, ωh,0), ph,0) to be a suitable approximations of (u0, p0) = 
((u0, ω0), 0), the solution of a slight modification of (3.30), that is, we chose (uh,0, ph,0), solving 

(∇uh,0, ∇vh)Ω + [Ah(uh,0)(uh,0), vh] + [B′(ph,0), vh] = [F0, vh] + (∇u0, ∇vh)Ω , 

− [B(uh,0), qh] = 0, 
(4.6) 

for all vh ∈ Hu 
h × H ωh and qh ∈ Hp

h. The well-posedness of (4.6) follows from the discrete inf-sup
condition (4.15) and similar arguments to the proof of Lemma 3.7. Alternatively, we can proceed as in
Anaya et al. (2023, eq. (4.4)) and apply a fixed-point strategy in conjunction with Caucao et al. (2021, 
Theorem 3.1) to ensure existence and uniqueness of (4.6). 

Next, we introduce the discrete kernel of B, that is, 

Vh := Kh × Hω 
h , where Kh =

{
vh ∈ Hu 

h : (qh, div(vh))Ω = 0 ∀ qh ∈ Hp 
h 
}
. (4.7) 

Then, we can introduce the reduced problem: Given f : [0, T] → H−1(Ω),  find  uh : [0, T ] → Kh × Hω
h

such that, for a.e. t ∈ (0, T),

∂ 
∂ t 

[E(uh(t)), vh] + [Ah(uh(t))(uh(t)), vh] = [F(t), vh] ∀ vh ∈ K h × Hω
h , (4.8)

which, using (4.1) and similarly to Lemma 2.1, is equivalent to (4.3). As a preliminary initial condition
for (4.8)  we  take  uh,0 := (uh,0, ωh,0) to be solution of the reduced problem associated to (4.6), that is,
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20 S. CAUCAO AND I. YOTOV

we chose uh,0, solving 

(∇uh,0, ∇vh)Ω + [Ah(uh,0)(uh,0), vh] = [F0, vh] + (∇u0, ∇vh)Ω ∀ vh ∈ Kh × Hω 
h , ( 4.9) 

with F0 ∈ H−1(Ω) × {0 } being the right-hand side of (3.28). Notice that the well-posedness of problem
(4.9) follows from similar arguments to those employed in the proof of Lemma 3.7. In addition, taking 
vh = uh,0 in (4.9), we deduce from the definition of the operator Ah(uh,0) (cf. (4.4)), the identity (4.5), 
and the continuity bound of F0 (cf. (3.29)), that there exists a constant Ĉ0 > 0, depending only on |Ω|,
‖iρ‖, ‖i4‖, ν, D and F, and hence independent of h, such that

‖uh,0‖2 
H1(Ω) + ‖uh,0‖ρ 

Lρ (Ω) + ‖ωh,0‖2 
L2(Ω) ≤ Ĉ0

{
‖u0‖2 

H1(Ω) + ‖u0‖4 
H1(Ω) + ‖u0‖2(ρ −1)

H1(Ω)

}
. (4.10)

Thus, from (4.9), we deduce an initial condition for (4.8), that is, uh,0 := (uh,0, ωh,0), the solution of 

[Ah(uh,0)(uh,0), vh] = [Fh,0, vh] ∀ vh ∈ Kh × Hω 
h , ( 4.11) 

with Fh,0 = (fh,0, 0) and (fh,0, vh)Ω := (f0, vh)Ω + (∇u0, ∇vh )Ω − (∇uh,0, ∇vh)Ω , which, thanks to
(3.29) and (4.10), yields∣∣(fh,0, vh)Ω

∣∣ ≤ Cd,0

{
‖u0‖H1(Ω) + ‖u0‖2 

H1(Ω) + ‖u0‖ρ−1 
H1(Ω)

}
‖vh‖H1 (Ω), (4.12) 

with Cd,0 > 0, depending only on |Ω|, ‖iρ‖, ‖i4‖, ν, D and F. Thus, Fh,0 ∈ H−1(Ω) ×  {0}.  We  
observe that this choice is necessary to guarantee that the discrete initial data is compatible in the sense
of Lemma 3.8, which is needed for the application of Theorem 3.1. 

In this way, the well-posedness of (4.8) (equivalently of (4.3)), follows analogously to its continuous 
counterpart provided in Theorem 3.9. More precisely, we first address the discrete counterparts of
Lemmas 3.3 and 3.4, whose proofs, being almost verbatim of the continuous ones, are omitted.

LEMMA 4.1. Let zh ∈ Kh (cf. (4.7)). Then, with the same constant γKV defined in (3.17), there holds 

[(E + Ah(zh))(vh), vh] ≥ γKV ‖vh‖2 
H1(Ω) + ν ‖ψh‖2 

L 2(Ω) , (4.13) 

and 

[(E + Ah(zh))(uh) − (E + Ah(zh))(vh), uh − vh] ≥ γKV ‖uh − vh‖2 
H1(Ω) + ν ‖ωh − ψh‖2 

L2(Ω) , 
(4.14) 

for all uh = (uh, ωh), vh = (vh, ψh) ∈ Hu 
h × Hω 

h . In addition, the operator E + Ah : (H uh × Hω
h ) →

(Hu
h × Hω

h )′ is continuous in the sense of (3.14), but with the constant

LKV,d = max

{
2  max{1 + D, κ2, ν}, ‖i4‖2

(
1 + 

√
d 

2

)
, 2ρ−3 F ‖iρ‖ρ cρ

}
.

We continue with the discrete inf-sup condition of B.
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LEMMA 4.2. It holds that 

sup 
0�=vh∈Hu 

h×Hω 
h 

[B(vh), qh]

‖vh‖
≥ βd ‖qh‖L2(Ω) ∀ qh ∈ Hp 

h, (4.15) 

where βd is the inf-sup constant from (4.1). 

Proof. The statement follows directly from (4.1). �
We are now in a position to establish the semi-discrete continuous in time analogue of Theorems 3.9 

and 3.10. To that end, we first introduce the ball of Kh giv en by

Wd :=
{

zh ∈ Kh : ‖zh‖H1(Ω) ≤ 
1 

γKV
‖̂f‖H−1 (Ω)

}
. (4.16)

The aforementioned result is stated now.

THEOREM 4.3. For each compatible initial data (uh,0, ph,0) := ((uh,0, ωh,0), ph,0) satisfying (4.11) and 
f ∈ W1,1(0, T; H−1(Ω)), there exists a unique solution to (4.3), (uh, ph) = ((uh, ωh), ph) : [0, T] → 
(Hu 

h × Hω 
h ) × Hp 

h, with uh ∈ W1,∞(0, T; Hu 
h) and (uh(0), ωh(0)) = (uh,0, ωh,0). Moreover, there exists a 

constant ĈKVr > 0, depending only on |Ω|, ‖iρ‖, ‖i4‖, ν,D,F and κ , such that

‖uh‖L∞(0,T;H1(Ω)) + ‖uh‖L2(0,T;L2(Ω)) + ‖ωh‖L2(0,T;L2(Ω)) 

≤ ĈKVr

√
exp(T)

(
‖f‖L2(0,T;H−1(Ω)) + ‖u0‖H1(Ω) + ‖u0‖2 

H1(Ω) + ‖u0‖ρ−1 
H 1(Ω)

)
, (4.17)

and a constant ĈKVp > 0, depending only on |Ω|, ‖iρ‖, ‖i4‖, ν,D,F, κ and βd, such that

‖ph‖L2(0,T;L2(Ω)) 

≤ ĈKVp

∑
j∈{2,3,ρ}

{√
exp(T)

(
‖f‖L2(0,T;H−1(Ω)) + ‖u0‖H1(Ω) + ‖u0‖2 

H1(Ω) + ‖u0‖ρ−1 
H1(Ω) 

)}j−1
.

(4.18)

Proof. According to Lemma 4.1, the discrete inf-sup condition for B provided by (4.15) in Lemma 4.2, 
a fixed-point approach as the one used in Lemma 3.7, but now with Wd (cf. (4.16)), and considering 
that (uh,0, ph,0) satisfies (4.11), the proof of existence and uniqueness of solution of (4.8) (equivalently 
of (4.3)) with uh ∈ W1,∞(0, T; Hu 

h) and uh(0) = uh,0, follows similarly to the proof of Theorem 3.9 by 
applying Theorem 3.1. Moreover, from the discrete version of (3.36), we deduce that ωh(0) = ωh,0. 

On the other hand, mimicking the steps followed in the proof of Theorems 3.9 and 3.10,  we  
obtain, respectively, the discrete versions of (3.32)–(3.34) and (3.38)–(3.41). Then, using the fact that 
(uh(0), ωh(0)) = (uh,0, ωh,0) and (4.10), we deriv e (4.17) and (4.18), thus completing the proof. �
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4.2 Error analysis 

Now we derive suitable error estimates for the semidiscrete scheme (4.3). To that end, we first recall that 
the discrete inf-sup condition of B (cf. (4.15)), along with a classical result on mixed methods (see, e.g.,
Gatica, 2014, eq. (2.89) in Theorem 2.6) ensure the existence of a constant C > 0, independent of h,
such that:

inf 
vh∈Vh

‖u − vh‖ ≤  C inf 
vh∈Hu 

h×Hω 
h

‖u − v h‖. (4.19)

Next, in order to obtain the theoretical rates of convergence for the discrete scheme (4.3), we recall the 
approximation properties of the finite element subspaces Hu 

h , Hω
h and Hp

h (cf. (4.2)) that can be found in
Brezzi & Fortin (1991), Ern & Guermond (2004) and Boffi et al. (2013). Assume that u ∈ H1+s(Ω), ω ∈ 
[Hs(Ω)]d(d−1)/2 and p ∈ Hs(Ω),  for  some  s ∈ (1/2, k + 1]. Then there exists C > 0, independent of h,
such that

inf 
vh∈Hu 

h

‖u − vh‖H1(Ω) ≤ C hs ‖u‖H1+s(Ω ), (4.20)

inf 
ψh∈Hω 

h

‖ω − ψh‖L2(Ω) ≤ C hs ‖ω‖H s(Ω), (4.21)

inf 
qh∈Hp 

h

‖p − qh‖L2(Ω) ≤ C hs ‖p‖Hs(Ω ). (4.22)

Owing to (4.19) and (4.20)–(4.22), it follows that, under an extra regularity assumption on the exact 
solution, there exist positive constants C(u), C(∂t u), C(p) and C(∂t p), depending on u, ω and p,
respectively, such that

inf 
vh∈Vh

‖u − vh‖ ≤  C(u) hs,  inf  
vh∈Vh

‖∂t u − vh‖ ≤  C(∂t u) hs, 

inf 
qh∈Hp 

h

‖p − qh‖L2(Ω) ≤ C(p) hs and inf 
qh∈Hp 

h

‖∂ t p − qh‖L2(Ω) ≤ C(∂t p) hs.
(4.23)

In turn, in order to simplify the subsequent analysis, we write eu = (eu, eω) = (u − uh, ω − ωh) and 
ep = p − ph. Next, given arbitrary v̂h := (̂vh, ψ̂h): [0, T] → Vh (cf. (4.7)) and q̂h : [0, T] → Hp 

h, as usual, 
we shall decompose the errors into 

eu = δu + ηu = (δu, δω) + (ηu, ηω), ep = δp + ηp, (4.24) 

with 
δu = u − v̂h, δω = ω − ψ̂h, δp = p − q̂h, 

ηu = v̂h − uh, ηω = ψ̂h − ωh, ηp = q̂h − p h. 
(4.25) 

In addition, we stress for later use that for each vh : [0, T] → Vh (cf. (4.7)) it holds that ∂t vh(t) ∈ Vh. 
In fact, given (vh, qh) :  [0, T] → Vh × Hp 

h, after simple algebraic computations, we obtain 

[B(∂t vh), qh] = ∂t

(
[B(vh), qh]

)− [B(vh), ∂t qh] = 0, (4.26)

where, the latter is obtained by observing that ∂t qh(t) ∈ Hp
h.
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 23

Finally, since the exact solution u ∈ H1 
0(Ω) satisfies div(u) = 0  in  Ω ,  we  h  ave

[Ah(u)(u), vh] = [A(u)(u), vh] ∀ vh ∈ Hu 
h × Hω

h .

In this way, by subtracting the discrete and continuous problems (2.11) and (4.3), respectively, we obtain 
the following error system: 

∂ 
∂ t

[
E(eu), vh

]
+ [Ah(u)(u) − Ah(uh)(uh), vh

]+
[
B(vh), ep

]
= 0 ∀ vh ∈ Hu 

h × Hω 
h ,[

B(eu), qh

]
= 0 ∀ qh ∈ Hp 

h . (4.27) 

We now establish the main result of this section, namely, the theoretical rate of convergence of the
semidiscrete scheme (4.3). Note that optimal rates of convergences are obtained for all the unknowns.

THEOREM 4.4. Let ((u, ω), p) :  [0, T] → (
H1 

0(Ω) × L2(Ω)
) × L2 

0(Ω) with u ∈ W1,∞(0, T; H−1(Ω)) 
and ((uh, ωh), ph) : [0, T] → (

Hu 
h × Hω 

h

)× Hp 
h with u h ∈ W1,∞(0, T; Hu

h) be the unique solutions of the
continuous and semidiscrete problems (2.11) and (4.3), respectively. Assume further that there exists s ∈ 
(1/2, k +1], such that u ∈ H1+s(Ω), ω ∈ [Hs(Ω)]d(d−1)/2 and p ∈ Hs(Ω). Then, there exists C(u, p)  >  
0, depending only on C(u), C(∂t u), C(p), C(∂t p), ‖iρ‖, ‖i4‖, |Ω|, ν,D,F, κ , βd, T , ‖f‖L2(0,T;H−1(Ω)) and
‖u0‖H1(Ω), such that

‖eu‖L∞(0,T;H1(Ω)) + ‖eu‖L2(0,T;L2(Ω)) + ‖eω‖L2(0,T;L2(Ω)) 

+ ‖ep‖L2(0,T;L2(Ω)) ≤ C(u, p)
(

hs + hs (ρ −1)
)

. (4.28)

Proof. First, adding and subtracting suitable terms in the first equation of (4.27), with vh = ηu = 
(ηu, ηω) :  [0, T] → Vh (cf. (4.7)), and using the decomposition 

[Ah(u)(u) − Ah(uh)(uh), ηu] = [Ah(uh)(̂vh) − Ah(uh)(uh), ηu] + [Ah(u)(u) − Ah(u)(̂vh), ηu] 

+ [ch(u − uh)(uh), ηu] + [ch(u)(ηu), ηu] − [ch(u h)(ηu), ηu ], (4.29) 

where the last two terms can be neglected thanks to the identity (4.5), proceeding as in (4.14) to bound 
the first term in the right-hand side of (4.29), and using the definitions of the operators E and B (cf.
(2.12), (2.16)), together with the fact that ηu(t) ∈ Vh, thus [B(ηu) , ηp] = 0, we deduce that

1 
2 

∂t

(
‖ηu‖2 

L2(Ω) + κ2‖∇ηu‖2 
L2(Ω)

)
+ D ‖ηu‖2 

L2(Ω) + FCρ ‖ηu‖ρ 
Lρ (Ω) + ν ‖ηω‖2 

L2(Ω) 

≤  −(∂tδu, ηu)Ω − κ2 (∂t∇δu, ∇ηu)Ω − [Ah(u)(u) − Ah(u)(̂vh), ηu] 

− [ch(u − uh)(uh), ηu] + (δp, div(ηu))Ω . (4.30)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/draf072/8244628 by U
niversity of Pittsburgh user on 24 January 2026



24 S. CAUCAO AND I. Y OTOV

The terms on the right-hand side can be bounded using the Cauchy–Schwarz, Hölder and Young’s
inequalities (cf. (1.1)), (3.14), as follows: 

− (∂tδu, ηu)Ω − κ2 (∂t∇δu, ∇ηu)Ω ≤ 
max{1, κ2} 

2

(
‖∂tδu‖2 

H1(Ω) + ‖ηu‖2 
H1(Ω)

)
, (4.31) 

− [Ah(u)(u) − Ah(u)(̂vh), ηu] 

≤ C̃1

{(
1 + ‖u‖H1(Ω) + ‖u‖ρ−2 

H1(Ω) − ‖̂vh‖ρ−2 
H1(Ω)

)
‖δu‖H1(Ω) + ‖δω‖L2(Ω)

} (
‖ηu‖H1(Ω) + ‖ηω‖L2(Ω)

)
≤ Ĉ1

{(
1 + ‖u‖H1(Ω) + ‖u‖ρ−2 

H1(Ω) + ‖δu‖ρ−2 
H1(Ω)

)
‖δu‖H1(Ω) + ‖δω‖L2(Ω)

} (
‖ηu‖H1(Ω) + ‖ηω‖L2(Ω)

)
≤ C1

{(
1 + ‖u‖2 

H1(Ω) + ‖u‖2 (ρ−2) 
H1(Ω)

)
‖δu‖2 

H1(Ω) + ‖δu‖2(ρ−1) 
H1(Ω) + ‖δω‖2 

L2(Ω)

}
+
(
‖ηu‖2 

H1(Ω) + 
ν 
2
‖ηω‖2 

L2(Ω )

)
, (4.32)

− [ch(u − uh)(uh), ηu] ≤
(

1 + 
√

d 
2

)
‖i4‖2 ‖uh‖H1(Ω)

(
‖δu‖H1(Ω) + ‖ηu‖H1(Ω)

)
‖ηu‖H1(Ω), 

≤ C2 ‖uh‖H1(Ω)

(
‖δu‖2 

H1(Ω) + ‖ηu‖2 
H1(Ω)

)
, ( 4.33)

(δp, div(ηu))Ω ≤ 
√

d 
2

(
‖δp‖2 

L2(Ω) + ‖ηu‖2 
H1 (Ω)

)
, (4.34) 

where C1, C2 > 0 depend on ‖i4‖, ‖iρ‖, κ ,D,F and ν. We note that in (4.32), we used the continuous 
injection of H1(Ω) into Lρ (Ω), with ρ ∈ [3, 4], cf. (1.2). Combining (4.30)–(4.34), and neglecting the 
term ‖ηu‖ρ 

Lρ(Ω)
in (4.30) to simplify the error estimate, we obtain 

∂t

(
‖ηu‖2 

L2(Ω) + κ2‖∇ηu‖2 
L2(Ω)

)
+ D ‖ηu‖2 

L2(Ω) + ν ‖ηω‖2 
L2(Ω) 

≤ C3

(
‖∂t δu‖2 

H1(Ω) +
(

1 + ‖uh‖H1(Ω) + ‖u‖2 
H1(Ω) + ‖u‖2 (ρ−2) 

H1(Ω)

)
‖δu‖2 

H1(Ω) 

+‖δu‖2(ρ−1) 
H1(Ω) + ‖δω‖2 

L2(Ω) + ‖δp‖2 
L2(Ω) +

(
1 + ‖uh‖H1(Ω)

)
‖ηu‖2 

H1(Ω)

)
, (4.35) 

with C3 a positive constant, depending on |Ω|, ‖i4‖, ‖iρ‖, ν,D,F and κ . Integrating (4.35)  from  0  to  
t ∈ (0, T], recalling that ‖u‖L∞(0,T;H1(Ω)) and ‖uh‖L∞(0,T;H1(Ω)) are bounded by data (cf. (3.31), (4.17)), 
we find that

‖ηu(t)‖2 
H1(Ω) +

∫ t 

0

(
‖ηu‖2 

L2(Ω) + ‖ηω‖2 
L2(Ω)

)
ds ≤ C4

{∫ t 

0

(
‖∂t δu‖2 

H1(Ω) + ‖δu‖2
)

ds 

+
∫ t 

0

(
‖δu‖2(ρ−1) 

H1(Ω) + ‖δp‖2 
L2(Ω)

)
ds

}
+ Ĉ4

{∫ t 

0
‖ηu‖2 

H1(Ω ) ds + ‖ηu(0)‖2 
H1(Ω)

}
, (4.36)

with C4, Ĉ4 > 0 depending on |Ω|, ‖i4‖, ‖iρ‖, ν,D,F, κ and data. 
On the other hand, to estimate ‖ep‖L2(0,T;L2(Ω)), we observe that from the discrete inf-sup condition

of B (cf. (4.15)), the first equation of (4.27), and the continuity bounds of B, E ,Ah (cf. (3.2), (3.4),
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 25

(3.14)), there holds 

βd ‖ηp‖L2(Ω) ≤ sup 
0�=vh∈Hu 

h×Hω 
h 

− ([∂t E(eu), vh] + [Ah(u)(u) − Ah(uh)(uh), vh] + [B(vh), δp]
)

‖vh‖

≤ C
(
‖∂teu‖H1(Ω) +

(
1 + ‖u‖H1(Ω) + ‖u‖ρ−2 

H1(Ω) 
+ ‖uh‖ρ−2 

H1(Ω)

)
‖eu‖H1(Ω) + ‖eω ‖L2(Ω) + ‖δp‖L2(Ω) 

)
, 

with C > 0 depending on |Ω|, ‖i4‖, ‖iρ‖, ν,D,F and κ . Then, taking square in the above inequality, 
integrating from 0 to t ∈ (0, T], using again the fact that ‖u‖L∞ (0,T;H1(Ω)) and ‖uh‖L∞(0,T;H1(Ω)) are
bounded by data (cf. (3.31), (4.17)) and employing (4.36), we deduce that∫ t 

0
‖ηp‖2 

L2(Ω) ds ≤ C5

∫ t 

0

(
‖∂t δu‖2 

H1(Ω) + ‖δu‖2 + ‖δu‖2(ρ−1) 
H1(Ω) + ‖δp‖2 

L2(Ω)

)
ds 

+ Ĉ5

{∫ t 

0

(
‖ηu‖2 

H1(Ω) + ‖∂t ηu‖2 
H1(Ω)

)
ds + ‖ηu(0)‖2 

H1(Ω)

}
, (4.37)

with C5, Ĉ5 > 0 depending on |Ω|, ‖i4‖, ‖iρ‖, ν,D,F, βd, κ and data. 

Bounds on time derivatives 
In order to bound the term ‖∂t ηu‖H1(Ω) in (4.37), we differentiate in time the equation of (4.27) 

related to ψh and choose vh = (∂t ηu, ηω) to find that 

min{1, κ2}‖∂t ηu‖2 
H1(Ω) + 

1 
2 

∂t

(
D ‖ηu‖2 

L2(Ω) + ν ‖ηω‖2 
L2(Ω)

)
=  −  (∂t δu, ∂t ηu)Ω − κ2 (∂t ∇δu, ∂t ∇ηu)Ω − D (δu, ∂t ηu)Ω − ν(∂t δω, ηω)Ω 

− ν(δω, curl(∂t ηu))Ω + ν(ηω, curl(∂tδu))Ω + (δp, div(∂tηu))Ω 

− F (|u|ρ−2u − |uh |ρ−2uh, ∂t ηu)Ω − ((∇u)u − (∇uh)uh, ∂tηu )Ω . (4.38) 

Notice that (ηp, div(∂tηu))Ω = 0 since (ηu(t), 0) ∈ Vh (cf. (4.7) and (4.26)). In turn, using the Hölder 
inequality, the estimate (3.16) and the continuous injection of H1(Ω) into Lρ (Ω), we deduce that there 
exists a constant cρ > 0, depending on |Ω| and ρ such that 

(|u|ρ−2u − |uh|ρ−2uh, ∂t ηu)Ω ≤ cρ

(‖u‖Lρ (Ω) + ‖uh‖Lρ (Ω)

)ρ−2 ‖eu‖Lρ−1(Ω)‖∂t ηu‖Lρ (Ω) 

≤ cρ ‖iρ‖ρ
(
‖u‖H1(Ω) + ‖uh‖H1(Ω)

)ρ−2 ‖eu‖H1(Ω) ‖∂t ηu‖H1(Ω) . 
(4.39) 

Similarly, but now adding and subtracting the term (∇ u)uh (it also works with (∇uh)u), using the
continuous injection of H1(Ω) into L4(Ω), we obtain

((∇u)u − (∇uh)uh, ∂tηu)Ω ≤
(
‖∇u‖L2(Ω)‖eu‖L4(Ω) + ‖uh‖L4(Ω)‖∇eu‖

L2(Ω)

)
‖∂tηu‖L4(Ω) 

≤ ‖i4‖2
(
‖u‖H1(Ω) + ‖uh‖H1(Ω)

)
‖eu‖H1(Ω)‖∂t ηu‖H1(Ω). (4.40)
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26 S. CAUCAO AND I. Y OTOV

Thus, integrating (4.38) from 0 to t ∈ (0, T], using the estimates (4.39) and (4.40), the Cauchy–Schwarz 
and Young’s inequalities, and the fact that ‖u‖L∞(0,T;H1(Ω)) and ‖uh‖L∞(0,T; H1(Ω)) are bounded by data
(cf. (3.31), (4.17)), in a way similar to (4.31)–(4.34), we find that

‖ηu(t)‖2 
L2(Ω) + ‖ηω(t)‖2 

L2(Ω) +
∫ t 

0
‖∂t ηu‖2 

H1(Ω) ds 

≤ C6

(∫ t 

0

(
‖∂t δu‖2 + ‖δu‖2 

H1(Ω) + ‖δω‖2 
L2(Ω) + ‖δp‖2 

L2(Ω)

)
ds 

+
∫ t 

0

(
‖ηu‖2 

H1(Ω) + ‖ηω‖2 
L2(Ω)

)
ds + ‖ηu(0) ‖2 

L2(Ω) + ‖ηω(0)‖2 
L2(Ω)

)
, (4.41)

where C6 > 0 depends on |Ω|, ‖i4‖, ‖iρ‖, ν,D,F, κ and data. Then, combining estimates (4.36), (4.37) 
and (4.41), using the Grönwall inequality, and some algebraic manipulations, we deduce that

‖ηu(t)‖2 
H1(Ω) + ‖ηω(t)‖2 

L2(Ω) +
∫ t 

0

(
‖ηu‖2 

L2(Ω) + ‖ηω‖2 
L2(Ω) + ‖ηp‖2 

L2(Ω) + ‖∂t ηu‖2 
H1(Ω)

)
ds 

≤ C7 exp(T)

(∫ t 

0

(
‖∂t δu‖2 + ‖δu‖2 + ‖δu‖2(ρ−1) 

H1(Ω) + ‖δp‖2 
L2(Ω)

)
ds + ‖ηu(0)‖2

)
, ( 4.42)

with C7 > 0 depending on |Ω|, ‖i4‖, ‖iρ‖, ν,D,F, βd, κ and data.

Bounds on initial data.
Finally, in order to bound the last term in (4.42), we subtract the continuous and discrete initial

condition problems (3.30) and (4.6) to obtain the error system: 

(∇u0 − ∇uh,0, ∇vh)Ω + [Ah(u0)(u0) − Ah(uh,0)(uh,0), vh] + [B(vh), p0 − ph,0] = 0, 

− [B(u0 − uh,0 ), qh] = 0, 

for all vh ∈ Hu 
h × Hω 

h and qh ∈ Hp
h. Then, proceeding as in (4.35), recalling from Theorems 3.9 and 4.3 

that (u(0), ω(0)) = (u0, ω0) and (uh(0), ωh(0)) = (uh,0, ωh,0), respectively, we get

‖ηu(0)‖2 
H1(Ω) + ‖ηω(0)‖2 

L2(Ω) ≤ C̃0

(
‖δu0

‖2 + ‖δu0
‖2 (ρ−1) 

H1(Ω) + ‖δp0
‖2 

L 2(Ω)

)
, (4.43)

where, similarly to (4.25), we denote δu0 
= (δu0 , δω0 ) = (u0 − v̂h(0), ω0 − ψ̂h(0)) and δp0 = p0 −

q̂h(0), with arbitrary (̂vh(0), ψ̂h(0)) ∈ Vh and q̂h(0) ∈ Hp 
h, and C̃0 is a positi ve constant, depending on

|Ω|, ‖i4‖, ‖iρ‖, ν,D,F and κ .
Thus, combining (4.42) with (4.43), and using the error decomposition (4.24), there holds

‖eu(t)‖2 
H1(Ω) +

∫ t 

0

(
‖eu‖2 

L2(Ω) + ‖eω‖2 
L2(Ω) + ‖ep‖2 

L2(Ω)

)
ds ≤ C8 exp(T) Ψ (u, p), (4.44)
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where 

Ψ  (u, p) := ‖δu(t)‖2 +
∫ t 

0

(
‖∂t δu‖2 + ‖δu‖2 + ‖δu‖2 (ρ−1) + ‖δp‖2 

L2(Ω)

)
ds 

+ ‖δu0
‖2 + ‖δu0

‖2 (ρ−1) + ‖δp0
‖2 

L2(Ω) , 

with C8 > 0 depending on |Ω|, ‖i4‖, ‖iρ‖, ν,D,F, βd, κ and data. Finally, using the fact that v̂h : [0, T] → 
Vh and q̂h : [0, T] → Hp

h are arbitrary, taking infimum in (4.44) over the corresponding discrete subspaces 
Vh and Hp 

h, and applying the approximation properties (4.23), we deriv e (4.28) and conclude the 
proof. �

REMARK 4.1. Observe that (4.28) can be expanded to include a bound on ‖∂t eu‖L2(0,T;H1(Ω)) and
‖eω‖L∞(0,T;L2(Ω)), using (4.42). 

5. Fully discrete appr oximation

In this section we introduce and analyze a fully discrete approximation of (2.11)  (c  f. (4.3)). To that end, 
for the time discretization we employ the backward Euler method. Let Δt be the time step, T = NΔt 
and let tn = nΔt, n = 0, ..., N.  Let  dtu

n = (Δt)−1(un − un−1) be the first order (backward) discrete 
time derivative, where un := u( tn). Then the fully discrete method reads: given fn ∈ H−1(Ω) and
(u0

h, p0
h) = ((uh,0, ωh,0), ph,0) satisfying (4.11), find (un 

h, pn 
h) := ((un 

h, ωn 
h), pn 

h) ∈ (Hu 
h × Hω 

h ) × Hp 
h, 

n = 1, ..., N, s uch that

dt[E(un 
h), vh] + [Ah(u

n 
h)(u

n 
h), vh] + [B(vh), pn 

h] = [Fn, vh] ∀ vh ∈ Hu 
h × Hω 

h , 

−[B(un 
h), qh] = 0 ∀ qh ∈ Hp

h, (5.1)

where [Fn, vh] := (fn, vh)Ω .
In what follows, given a separable Banach space V endowed with the norm ‖ · ‖V,  we  make  use  of  

the following discrete in time norms:

‖u‖2
�2(0,T;V) := Δt 

N∑
n=1

‖un‖2 
V and ‖u‖�∞(0,T;V) := max 

0≤n≤N 
‖un‖V. (5.2) 

We also recall the well-known identity: 

(dtu
n 
h, un 

h)Ω = 
1 
2 

dt ‖un 
h‖2 

L2(Ω) + 
1 
2 

Δt ‖dt u
n 
h‖2 

L2(Ω) , (5.3) 

which follows from the definition of the discrete time derivative dtu
n 
h = (Δt)−1(un 

h − un−1 
h ) and the 

polarization identity (a − b, a) = 1

2

(|a|2 − |b|2 + |a − b|2), applied with a = un
h and b = un−1

h . In

addition, we state for later use the following discrete Grönwall inequality (Quarteroni & Valli, 1994, 
Lemma 1.4.2):
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28 S. CAUCAO AND I. YOTOV

LEMMA 5.1. Let Δ t > 0, B ≥ 0 and let an, bn, cn, dn, n ≥ 0, be non-neg ative sequence such that a0 ≤ B
and

an + Δ t 
n∑

l=1 
bl ≤ Δ t 

n−1∑
l=1 

dl al + Δ t 
n∑

l=1

cl + B, n ≥ 1.

Then,

an + Δ t 
n∑

l=1 
bl ≤ exp

(
Δ t 

n−1∑
l=1 

dl

)(
Δ t 

n∑
l=1 

cl + B

)
, n ≥ 1.

Next, we state the main results for method (5.1). 

THEOREM 5.2. For each (u0 
h, p0 

h) := ((uh,0, ωh,0), ph,0) satisfying (4.6) and fn ∈ H−1(Ω), n = 1, ..., N, 
there exist a unique solution (un 

h, pn 
h) := ((un 

h, ωn 
h), pn

h) ∈ (Hu
h × Hω

h ) × Hp
h to (5.1), with n = 1, ..., N. 

Moreover, there exists a constant C̃KVr > 0, depending only on |Ω|, ‖iρ‖, ‖i4‖, ν,D,F and κ , such that

‖uh‖�∞(0,T;H1(Ω)) + Δt‖dtuh‖�2(0,T;H1(Ω)) + ‖uh‖�2(0,T;L2(Ω)) + ‖ωh‖�2(0,T;L2(Ω)) 

≤ C̃KVr

√
exp(T)

(
‖f‖�2(0,T;H−1(Ω)) + ‖u0‖H1(Ω) + ‖u0‖2 

H1(Ω) + ‖u0‖ρ− 1 
H1(Ω)

)
, (5.4)

and a constant C̃KVp > 0 depending only on |Ω|, ‖iρ‖, ‖i4‖, ν,D,F, κ and βd, such that

‖ph‖�2(0,T;L2(Ω)) 

≤ C̃KVp

∑
j∈{2,3,ρ}

{√
exp(T)

(
‖f‖�2(0,T;H−1(Ω)) + ‖u0‖H1(Ω) + ‖u0‖2 

H1(Ω) + ‖u0‖ρ−1 
H1(Ω) 

)}j−1
.

(5.5)

Proof. Existence of a solution of the fully discrete problem (5.1) at each time step tn, n = 1, ..., N, can 
be established by induction. In particular, assuming that a solution exists at tn−1, e xistence of a solution
at tn follows from similar arguments to those employed in the proof of Lemma 3.7, using the discrete 
inf-sup condition (4.15). We postpone the proof of uniqueness until after the stability bound.

The derivation of (5.4) and (5.5) can be obtained similarly as in the proof of Theorems 3.9 and 3.10, 
respectively. In fact, we choose (vh, qh) = (un

h, pn
h) in (5.1), use the identity (5.3), the definition of the 

operator Ah (cf. (4.4)), the well-known inequality for dual norms: (fn, un 
h)Ω ≤ ‖fn‖H−1(Ω) ‖un 

h‖H1(Ω)

and Young’s inequality (cf. (1.1)), to obtain 

1 
2 

dt

(
‖un 

h‖2 
L2(Ω) + κ2 ‖∇un 

h‖2 
L2(Ω)

)
+ 

1 
2 

Δt
(
‖dtu

n 
h‖2 

L2(Ω) + κ2 ‖dt∇un 
h‖2 

L2(Ω)

)
+ D ‖un 

h‖2 
L2(Ω) + F ‖un 

h‖ρ 
Lρ (Ω) + ν ‖ωn 

h‖2 
L2(Ω)

≤ 1

2

(
‖fn‖2

H−1(Ω)
+ ‖un

h‖2
H1(Ω)

)
. (5.6)
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 29

Then, summing up over the time index n = 1, ..., m, with m = 1, . . . , N, in (5.6) and multiplying by Δt, 
we get

γ̂KV ‖um 
h ‖2 

H1(Ω) + γ̂KV (Δt)2 
m∑

n=1

‖dtu
n 
h‖2 

H1(Ω) + 2 Δt 
m∑

n=1

(
D ‖un 

h‖2 
L2(Ω) + ν ‖ωn 

h‖2 
L2(Ω)

)

≤ Δt 
m∑

n=1

‖fn‖2 
H−1(Ω) + γ̂KV ‖u0 

h‖2 
H1(Ω ) + Δt 

m∑
n=1

‖un 
h‖2 

H1 (Ω)
, (5.7)

with γ̂KV as in (3.33). Notice that, in order to simplify the stability bound, we have neglected the term
‖un

h‖ρ

Lρ(Ω)
in the left-hand side of (5.6). Thus, analogously to (3.34), applying the discrete Grönw all

inequality (cf. Lemma 5.1)  i  n (5.7) and recalling that N Δt = T , and using the estimate (4.10), we 
deduce the stability bound (5.4). Unlike its continuous counterpart (3.31), however, the constant C̃ KVr
in (5.4) depends on F due to the use of (4.10). 

On the other hand, from the discrete inf-sup condition of B (cf. (4.1)) and the first equation of (5.1) 
related to vh, we deduce the discrete version of (3.38), that is, 

βd ‖pn 
h‖L2(Ω) ≤ ‖fn‖H−1(Ω) + D ‖un 

h‖L2(Ω) + ν ‖ωn 
h‖L2(Ω) 

+ ‖i4‖2 ‖un 
h‖2 

H1(Ω) + F ‖iρ‖ρ ‖un 
h‖ρ−1 

H1(Ω) + (1 + κ2)‖dtu
n 
h‖H1(Ω). ( 5.8)

Then, squaring (5.8), summing up over the time index n = 1, ..., m, with m = 1, .  .  .  , N, and multiplying
by Δt, we deduce analogously to (3.39), that there exists C1 > 0, depending on |Ω|, ‖i4‖, ‖iρ‖, ν,D,F, κ 
and βd, s uch that

Δt 
m∑

n=1

‖pn 
h‖2 

L2(Ω) ≤ C1

{
Δt 

m∑
n=1

(
‖fn‖2 

H−1(Ω) + ‖un 
h‖2 

L2(Ω) + ‖ωn 
h‖2 

L2(Ω)

)

+ Δt 
m∑

n=1

(
‖un 

h‖4 
H1(Ω) + ‖un 

h‖2 (ρ−1) 
H 1(Ω)

+ ‖dtu
n
h‖2

H1(Ω)

)}
. (5.9)

Next, in order to bound the last term in (5.9), we choose (vh, qh) = ((dt u
n 
h, ωn 

h), pn
h) in (5.1), apply 

some algebraic manipulation, use the identity (5.3) and the Cauchy–Schwarz and Young’s inequalities, 
to obtain the discrete version of (3.40):

γ̂KV ‖dtu
n 
h‖2 

H1(Ω) + 
1 
2 

dt

(
D ‖un 

h‖2 
L2(Ω) + ν ‖ωn 

h‖2 
L2(Ω)

)
+ 

1 
2 

Δt
(
D ‖dtu

n 
h‖2 

L2(Ω) + ν ‖dtω
n 
h‖2 

L2(Ω)

)
+F (|un 

h|ρ−2un 
h, dtu

n 
h)Ω ≤

(
‖fn‖H−1(Ω) + ‖i4‖2

(
1 + 

√
d 

2

)
‖un 

h‖2 
H1(Ω)

)
‖dtu

n 
h‖H1(Ω) 

≤ C2

(
‖fn‖2 

H−1(Ω) + ‖un 
h‖4 

H1(Ω)

)
+ γ̂KV 

2
‖dtu

n 
h‖2 

H1(Ω)
, (5.10)
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30 S. CAUCAO AND I. Y OTOV

with γ̂KV as in (3.33) and C2 > 0, depending on ‖i4‖, d and κ . In turn, employing Hölder and Young’s
inequalities, we are able to deduce (cf. Caucao et al., 2022, eq. (5.13)): 

(|un 
h|ρ−2un 

h, dtu
n 
h)Ω ≥ 

(Δt)−1 

ρ

(
‖un 

h‖ρ 
Lρ (Ω) − ‖un−1 

h ‖ρ 
Lρ (Ω)

)
= 

1 
ρ 

dt ‖un 
h‖ρ 

Lρ (Ω ). ( 5.11)

Thus, combining (5.10) with (5.11), using Young’s inequality, summing up over the time index n = 
1, ..., m, with m = 1, .  .  . , N and multiplying by Δt, we get the discrete version of (3.41): 

D ‖um 
h ‖2 

L2(Ω) + 
2F 

ρ
‖um 

h ‖ρ 
Lρ (Ω) + ν ‖ωm 

h ‖2 
L2(Ω) + γ̂KV Δt 

m∑
n=1

‖dtu
n 
h‖2 

H1(Ω) 

≤ 2C2 Δt 
m∑

n=1

(
‖fn‖2 

H−1(Ω) + ‖un 
h‖4 

H1(Ω)

)
+ D ‖u0 

h‖2 
L2(Ω) + 

2 F 
ρ

‖u0 
h‖ρ 

Lρ (Ω) + ν ‖ω0 
h‖2 

L2(Ω) . 

(5.12)

Combining (5.9) with (5.7) and (5.12), using the fact that (u0 
h, ω0 

h) = (uh,0, ωh,0) and (4.10), we deduce 
that 

Δt 
m∑

n=1

‖pn 
h‖2 

L2(Ω) ≤ C3

{
Δt 

m∑
n=1

‖fn‖2 
H−1(Ω) + ‖u0‖2 

H1(Ω) + ‖u0‖4 
H1(Ω) + ‖u0‖2(ρ−1) 

H1(Ω) 

+ Δt 
m∑

n=1

(
‖un 

h‖2 
H1(Ω) + ‖un 

h‖4 
H1 (Ω) + ‖un 

h‖2 (ρ−1) 
H1(Ω) 

)}
, (5.13) 

with m = 1, .  .  .  , N and C3 > 0, depending on |Ω|, ‖i4‖, ‖iρ‖, ν,D,F, κ , d and βd. Then, using (5.4)  to  
bound ‖un 

h‖2 
H1(Ω) , ‖un 

h‖4 
H1(Ω) and ‖un 

h‖2 (ρ−1 )
H1(Ω)

in the left-hand side of (5.13), we obtain (5.5). 
Finally, uniqueness of the solution at each time step can be established using that ‖uh‖�∞(0,T;H1(Ω)) is 

bounded by data (cf. (5.4)), following the argument showing uniqueness of the weak solution in Theorem 
3.9. In particular, starting from the time-discrete version of (3.35), the uniqueness follows from summing 
in time and using the discrete Grönwall inequality (cf. Lemma 5.1). �

Now, we proceed with establishing rates of convergence for the fully discrete scheme (5.1). To that 
end, we subtract the fully discrete problem (5.1) from the continuous counterparts (2.11) at each time 
step n = 1, .  .  . , N, to obtain the following error system: 

dt [E(en 
u), vh] + [Ah(u

n)(un) − Ah(u
n 
h)(u

n 
h), vh] + [B(vh), en 

p] = [rn(u), vh], 

[B(en 
u ), qh] = 0, 

(5.14) 

for all v h ∈ Hu
h × Hω

h and qh ∈ Hp
h, where

[rn(u), vh]  := (rn(u), vh)Ω + κ2 (rn(∇u), ∇vh)Ω ,
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A MIXED FORMULATION FOR THE KVBF EQUATIONS 31

and rn denotes the difference between the time derivative and its discrete analog, that is

rn(u) = dt u
n − ∂t u (tn).

In addition, we recall from Bukač et al. (2015, Lemma 4) that for sufficiently smooth u, there holds 

Δ t 
N∑

n=1

‖rn(u)‖2 
H1(Ω) ≤ C(∂tt u)  (Δ t)2, with C(∂tt u) := C ‖∂tt u‖2 

L2(0,T;H1(Ω)) . (5.15) 

Then, the proof of the theoretical rate of convergence of the fully discrete scheme (5.1) follows the 
structure of the proof of Theorem 4.4, using discrete-in-time arguments as in the proof of Theorem 5.2, 
the discrete Grönwall inequality (cf. Lemma 5.1) and the estimate (5.15) (see Caucao et al., 2022, 
Theorem 5.4 for a similar approach).

THEOREM 5.3. Let the assumptions of Theorem 4.4 hold. Then, for the solution of the fully discrete
problem (5.1) there exists Ĉ(u, p)  >  0, depending only on C(u), C(∂t u), C(∂tt u), C(p), C(∂t p), |Ω|,
‖iρ‖, ‖i4‖, ν,D,F, κ , βd, T , ‖f‖�2(0,T;H−1(Ω)) and ‖u0‖H1(Ω), such that

‖eu‖�∞(0,T;H1(Ω)) + Δ t ‖dt eu‖�2(0,T;H1(Ω)) + ‖eu‖�2(0,T;L2(Ω)) 

+ ‖eω‖�2(0,T;L2(Ω)) + ‖ep‖�2(0,T;L2(Ω)) ≤ Ĉ(u, p)
(

hs + hs (ρ− 1) + Δ t
)

. (5.16)

REMARK 5.1. For the fully discrete scheme (5.1) we have considered the backward Euler method only for 
the sake of simplicity. The analysis developed in Section 5 can be adapted to other time discretizations, 
such as BDF schemes or the Crank–Nicholson method.

6. Numerical r esults

In this section, we present three numerical results that illustrate the performance of the fully discrete
method (5.1). The implementation is based on a FreeFEM code (Hecht, 2012). We use quasi-uniform 
triangulations and the finite element subspaces detailed in Section 4.1 (cf. (4.2)). The nonlinearity is 
handled using a Newton–Raphson algorithm with a fixed tolerance of tol = 1E−06. The iterative process 
is stopped when the relative error between two consecutive iterations of the complete coefficient vector, 
namely coeffm and coeffm+1, is sufficiently small, i.e.,

‖coeffm+1 − coeffm‖DoF
‖coeffm+1‖DoF 

≤ to l, 

where ‖ · ‖DoF stands for the usual Euclidean norm in RDoF, with DoF denoting the total number of
degrees of freedom defined by the finite element subspaces Hu

h , Hω
h and Hp

h (cf. (4.2)). 
Examples 1 and 2 are used to corroborate the rate of convergence in two- and three-dimensional 

domains, respectively. The total simulation time for these examples is T = 0.001 and the time step is 
Δ t = 10−4. The time step is sufficiently small, so that the time discretization error does not affect the
convergence rates. On the other hand, Example 3 is utilized to analyze the method’s behavior under
various scenarios, considering different Darcy and Forchheimer coefficients, as well as varying values
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32 S. CAUCAO AND I. YOTOV

FIG. 1. [Example 1] Computed magnitude of the velocity, vorticity and pressure fields at time T = 0.001.

of the elasticity parameter κ . For these cases, the total simulation time and the time step are chosen as
T = 1 and Δ t = 10−2, respectively.

6.1 Example 1: Two-dimensional smooth exact solution

In this test we study the convergence for the space discretization using an analytical solution. The domain 
is the square Ω = (0, 1)2. We consider ρ = 3, ν = 1,D = 1,F = 10, κ = 1, and the datum f is adjusted 
so that the exact solution is given by the smooth functions:

u = exp(t)

(
sin(πx) cos(πy) 

− cos(πx) sin(πy)

)
and p = exp(t) cos(πx) sin 

(πy

2

)
.

The model problem is then complemented with the appropriate Dirichlet boundary condition and
initial data.

In Fig. 1, we display the solution obtained with the Crouzeix–Raviart-based approximation, 39, 146 
triangle elements and 176 926DoF at time T = 0.001. Table 1 shows the convergence history for a 
sequence of quasi-uniform mesh refinements, including the average number of Newton iterations. The 
results confirm that the optimal spatial rates of convergence O(hk+1) provided by Theorem 5.3 (see also 
Theorem 4.4) are attained for the Taylor–Hood based scheme, with k = 1. In addition, optimal order 
O(h) is also obtained for the MINI-element and Crouzeix–Raviart based discretizations. The Newton’s
method exhibits behavior independent of the mesh size, converging in 2.1 iterations in average in all
cases.

6.2 Example 2: Three-dimensional smooth exact solution

In the second example, we consider the cube domain Ω = ( 0, 1)3 and the exact solution

u = exp(t) 

⎛⎝ 
sin(π x) cos(π y) cos(π z) 

−2 cos(π x) sin(π y) cos(π z) 
cos(π x) cos(π y) sin(π z) 

⎞⎠ and p = exp(t) (x − 0.5)3 sin(y + z).
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TABLE 1 [Example 1] Number of degrees of freedom, mesh sizes, average number of Newton iterations, 
errors, and rates of converg ence with ρ = 3, ν = 1,D = 1, F = 10 and κ = 1

Taylor–Hood-based discretization

‖eu‖�∞(0,T;H1(Ω)) ‖eu‖�2(0,T;L2(Ω)) ‖eω‖�2(0,T;L2(Ω)) ‖ep‖�2(0,T;L2(Ω)) 

DoF h iter error rate error rate error rate error rate 
232 0.373 2.1 1.95E-01 – 2.03E-04 – 6.37E-03 – 3.76E-00 – 
860 0.196 2.1 3.57E-02 2.653 1.80E-05 3.782 1.18E-03 2.636 5.15E-01 3.105 
3216 0.097 2.1 8.69E-03 2.001 2.17E-06 2.998 2.90E-04 1.986 9.16E-02 2.448 
12468 0.048 2.1 2.00E-03 2.074 2.51E-07 3.049 6.76E-05 2.058 1.42E-02 2.631 
49142 0.025 2.1 5.21E-04 2.013 3.29E-08 3.042 1.78E-05 2.000 4.03E-03 1.888 
197270 0.013 2.1 1.27E-04 2.160 3.94E-09 3.252 4.30E-06 2.176 8.17E-04 2.447 

MINI-element-based discretization

‖eu‖�∞(0,T;H1(Ω)) ‖eu‖�2(0,T;L2(Ω)) ‖eω‖�2(0,T;L2(Ω)) ‖ep‖�2(0,T;L2(Ω)) 

DoF h iter error rate error rate error rate error rate 
180 0.373 2.1 1.22E-00 – 1.23E-03 – 9.50E-03 – 2.52E+01 – 
676 0.196 2.1 6.62E-01 0.961 2.95E-04 2.224 2.43E-03 2.132 6.37E-00 2.149 
2548 0.097 2.1 3.30E-01 0.985 7.39E-05 1.962 8.68E-04 1.456 3.31E-00 0.925 
9924 0.048 2.1 1.68E-01 0.957 1.87E-05 1.943 3.62E-04 1.236 1.50E-00 1.125 
39212 0.025 2.1 8.47E-02 1.024 4.69E-06 2.068 1.70E-04 1.130 7.25E-01 1.084 
157612 0.013 2.1 4.14E-02 1.098 1.15E-06 2.162 7.52E-05 1.252 3.51E-01 1.110 

Crouzeix–Raviart-based discretization

‖eu‖�∞(0,T;H1(Ω)) ‖eu‖�2(0,T;L2(Ω)) ‖eω‖�2(0,T;L2(Ω)) ‖ep‖�2(0,T;L2(Ω)) 

DoF h iter error rate error rate error rate error rate 
187 0.373 2.1 7.59E-01 – 1.05E-03 – 1.45E-02 – 9.57E-00 – 
733 0.196 2.1 3.87E-01 1.050 2.61E-04 2.170 4.82E-03 1.722 5.67E-00 0.819 
2815 0.097 2.1 1.95E-01 0.974 6.59E-05 1.951 1.74E-03 1.447 3.04E-00 0.885 
11065 0.048 2.1 9.86E-02 0.962 1.70E-05 1.918 7.61E-04 1.168 1.47E-00 1.023 
43918 0.025 2.1 4.93E-02 1.037 4.22E-06 2.083 3.75E-04 1.057 7.91E-01 0.930 
176926 0.013 2.1 2.44E-02 1.081 1.03E-06 2.167 1.70E-04 1.219 3.76E-01 1.138 

Similarly to the first example, we consider the parameters ρ = 4, ν = 1,D = 1,F = 10 and κ = 1, and
the right-hand side function f is computed from (2.3) using the abo ve solution.

The numerical solution obtained with the Taylor–Hood-based approximation, 63, 888 tetrahedral 
elements and 322 043DoF at time T = 0.001 is shown in Fig. 2. The convergence history for a set of 
quasi-uniform mesh refinements using Taylor–Hood and MINI-element-based approximations is shown
in Table 2. Again, the mixed finite element method converges optimally with order O(h2) and O(h), 
respectively, as it was proved by Theorem 5.3 (see also Theorem 4.4). 

6.3 Example 3: Flow through porous media with channel network

Finally, inspired by Ambartsumyan et al. (2019, Section 5.2.4), we focus on a flow through a porous 
medium with a channel network. We consider the square domain Ω = (−1, 1)2 with an internal channel
network denoted as Ωc. The domain configuration and the prescribed mesh are described in the plots
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TABLE 2 [Example 2] Number of degrees of freedom, mesh sizes, average number of Newton iterations, 
errors, and rates of converg ence with ρ = 4, ν = 1,D = 1, F = 10 and κ = 1

Taylor–Hood-based discretization

‖eu‖�∞(0,T;H1(Ω)) ‖eu‖�2(0,T;L2(Ω)) ‖eω‖�2(0,T;L2(Ω)) ‖ep‖�2(0,T;L2(Ω)) 

DoF h iter error rate error rate error rate error rate 
483 0.707 2.1 1.56E-00 – 2.76E-03 – 4.48E-02 – 6.44E+01 – 
2687 0.354 2.1 4.36E-01 1.842 3.79E-04 2.869 1.33E-02 1.750 4.33E-00 3.895 
17655 0.177 2.1 1.12E-01 1.956 4.89E-05 2.952 3.09E-03 2.106 2.75E-01 3.976 
86667 0.101 2.1 3.69E-02 1.988 9.21E-06 2.984 9.83E-04 2.047 3.05E-02 3.930 
322043 0.064 2.1 1.50E-02 1.996 2.38E-06 2.994 3.95E-04 2.019 5.21E-03 3.909 

MINI-element-based discretization

‖eu‖�∞(0,T;H1(Ω)) ‖eu‖�2(0,T;L2(Ω)) ‖eω‖�2(0,T;L2(Ω)) ‖ep‖�2(0,T;L2(Ω)) 

DoF h iter error rate error rate error rate error rate 
333 0.707 2.1 7.55E-00 – 1.08E-02 – 6.97E-02 – 1.27E+03 – 
2027 0.354 2.1 4.53E-00 0.738 3.52E-03 1.615 2.36E-02 1.563 6.43E+02 0.986 
14319 0.177 2.1 2.27E-00 0.999 8.77E-04 2.004 6.58E-03 1.842 1.87E+02 1.777 
73017 0.101 2.1 1.29E-00 1.010 2.79E-04 2.046 2.32E-03 1.862 6.79E+01 1.812 
276833 0.064 2.1 8.17E-01 1.007 1.12E-04 2.023 1.01E-03 1.848 3.02E+01 1.791 

FIG. 2. [Example 2] Computed magnitude of the velocity and vorticity , and pressure field at time T = 0.001.

of the first column of Fig. 3. First, we consider the Kelvin–Voigt–Brinkman–Forchheimer model (2.3) 
in the whole domain Ω , with parameters ρ = 3, ν = 1 and κ = 1, but with different v alues of the
parameters D and F for the interior and the exterior of the channel, that is,

D =
{

1  in  Ωc 
1000 in Ω \ Ωc 

and F =
{

10 in Ω c
1 in Ω \ Ωc

. (6.1)

The parameter choice corresponds to high permeability (D = 1) in the channel and increased inertial 
effect (F = 10), compared to low permeability (D = 1000) in the porous medium and reduced inertial
effect (F = 1). In addition, the body force term is f = 0, the initial condition is zero, and the boundaries
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FIG. 3. [Example 3] Domain configuration and prescribed mesh (plots in first column), and computed magnitude of the velocity, 
vorticity and pressure field at time T = 0.01 (top plots), at time T = 0.2 (middle plots), and at time T = 1 (bottom plots).

conditions are 

u · n = 0.2, u · t = 0  on  Γleft,

(
κ2 ∂ ∇u 

∂ t 
− p I

)
n + ν ωt = 0 on Γ \ Γleft ,

which corresponds to inflow on the left boundary and zero viscoelastic stress outflow on the rest of the
boundary.

In Fig. 3, we display the computed magnitude of the velocity, vorticity and pressure at times 
T = 0.01, 0.2 and 1, which were obtained using the MINI-element-based approximation on a mesh with 
27 287 triangle elements and 109 682DoF. As expected, we observe a faster flow through the channel 
network, accompanied by a significant change in vorticity across the interface between the channel
and the porous medium. The pressure field decreases as time increases. This example illustrates the
Kelvin–Voigt–Brinkman–Forchheimer model’s capability to handle heterogeneous media with spatially
varying parameters. It also demonstrates our three-field mixed finite element method’s ability to resolve
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FIG. 4. [Example 3] Computed magnitude of the velocity, vorticity and pressure field at time T = 1, with ρ = 3, channel setting 
F = 10 and D = 1, and porous media setting F = 1  and  D = 1000, for κ ∈ {3, 2, 1, 0.1, 0.01} (from left to right).

sharp vorticities in the presence of strong jump discontinuities in the parameters. We further study 
the robustness of the method with respect to the elasticity parameter κ . In Fig. 4 we display the 
computed magnitude of the velocity, vorticity, and pressure for the settings given by (6.1), considering 
κ ∈  {3, 2, 1, 0.1, 0.01}. We observe that the elasticity parameter κ has a dissipative effect, reducing 
the velocity in the channel and slightly affecting the pressure in the entire domain, while the vorticity 
increases as κ decreases. This study illustrates that the method produces stable and physically reasonable
results across a wide range of physical parameters, such as D, F and κ .

7. Conclusions 

In this paper, we presented a new velocity-vorticity-pressure formulation for the Kelvin–Voigt–Brink-
man–Forchheimer equations and its mixed finite element approximation. The system models fast 
unsteady viscoelastic flows in highly porous media. The formulation has several advantages, including 
an accurate and smooth approximation of the vorticity, well posedness for large data, and optimal 
convergence rates without a mesh quasi-uniformity assumption. Well-posedness of the weak formulation, 
as well as stability and error analysis for the semidiscrete and fully discrete mixed finite element
approximations are presented. The numerical results illustrate that the method is robust for a wide range
of parameters, the ability of the system to model heterogeneous media exhibiting both Stokes and Darcy
flow regimes, as well as the dissipative effect of the elasticity parameter. Future research directions
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include the study of a pseudostress and skew-symmetric-based mixed formulation for the problem, along
with the use of Banach space techniques, as in Colmenares et al. (2020), Caucao et al. (2021) and Caucao 
et al. (2022), to naturally impose the non-homogeneous Dirichlet boundary condition and to obtain direct 
approximations of physical variables of interest, such as the velocity gradient and the viscoelastic stress
tensor.
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