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A ROBIN-ROBIN SPLITTING METHOD FOR THE
STOKES-BIOT FLUID-POROELASTIC STRUCTURE
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ABSTRACT. We develop and analyze a splitting method for fluid-poroelastic
structure interaction. The fluid is described using the Stokes equations and the
poroelastic structure is described using the Biot equations. The transmission
conditions on the interface are mass conservation, balance of stresses, and the
Beavers-Joseph-Saffman condition. The splitting method involves single and
decoupled Stokes and Biot solves at each time step. The sub-domain problems
use Robin boundary conditions on the interface, which are obtained from the
transmission conditions. The Robin data is represented by an auxiliary inter-
face variable. We prove that the method is unconditionally stable and establish
that the time discretization error is O(v/TAt), where T is the final time and
At is the time step. We further study the iterative version of the algorithm,
which involves an iteration between the Stokes and Biot sub-problems at each
time step. We prove that the iteration converges to a monolithic scheme with
a Robin Lagrange multiplier used to impose the continuity of the velocity.
Numerical experiments are presented to illustrate the theoretical results.

1. INTRODUCTION

We consider the interaction of an incompressible, viscous, and Newtonian fluid
with a poroelastic medium, referred to as fluid-poroelastic structure interaction
(FPSI). This phenomenon occurs in a wide range of applications, including surface-
groundwater flows, geomechanics, reservoir engineering, filter design, seabed-wave
interaction, and arterial blood flows. The modeling leads to coupled problems that
present significant mathematical and computational challenges.

We model the incompressible flow with the Stokes equations and the poroelastic
medium with the Biot system [§]. In the latter, the equation describing the defor-
mation of the elastic porous matrix is complemented with the Darcy equations that
describe the average velocity and pressure of the fluid in the pores. The Stokes and
Biot problems are coupled at the interface between the fluid and porous regions
through dynamic and kinematic transmission conditions. The Stokes-Biot model
combines two classical well-studied kinds of coupling: the fluid-(elastic)structure
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interaction (FSI) with thick structure and the Stokes—Darcy coupling. While his-
torically the Stokes-Biot and Navier-Stokes-Biot couplings have been less studied,
they have received increasing attention in recent years.

Early works on the coupled Stokes-Biot problem include [38]145]. Well-posedness
of the fully dynamic model was established in [45]. In [5], both monolithic solvers
and partitioned approaches based on domain decomposition methods [40] were ap-
plied to the Navier-Stokes-Biot problem, whose well-posedness with a non-mixed
Darcy formulation is established in [22]. A non-iterative partitioned method based
on operator splitting for the Navier-Stokes-Biot problem with non-mixed Darcy
formulation was introduced in [14] and extended in [I3]. The model with a mixed
Darcy formulation was studied in [I2]. In this formulation, the continuity of flux
across the interface is a condition of essential type, which is enforced with the
Nitsche’s interior penalty method. A mixed formulation for the Darcy problem in
the Stokes-Biot coupling was also adopted in [3], where the continuity of flux is
imposed via a Lagrange multiplier method. A more complex Stokes-Biot problem
involving a non-Newtonian fluid is considered in [I]. A finite element method for
the four-field Stokes velocity-pressure and Biot displacement-pressure formulation is
presented in [23]. A total pressure formulation for the Stokes-Biot problem is intro-
duced in [41], a stress-displacement mixed elasticity formulation is studied in [36],
a fully mixed formulation is developed in [20], and a HDG method is presented
in [25]. An augmented finite element method for the fully mixed Navier-Stokes-
Biot problem is developed in [35]. Several interesting extensions of the Stokes-Biot
problem have also been proposed, including a dimensionally-reduced model for flow
through fractures [I5], coupling with transport [2,[19], multilayered porous media
[9], and porohyperelastic media [44]. An optimization-based decoupling method
is presented in [24]. Second order in time split schemes are developed in [331[39].
Parameter-robust preconditioners are studied in [I1].

In this paper, we study a new Robin-Robin partitioned method for the Stokes-
Biot problem. We employ a velocity-pressure Stokes formulation, a displacement-
based elasticity formulation, and a mixed velocity-pressure Darcy formulation. The
starting point is a rewriting of the coupling conditions for the Stokes-Biot problem,
which state mass conservation, balance of stresses, and slip with friction (Beavers-
Joseph-Saffman condition). These conditions are combined to generate two sets of
Robin boundary conditions on the interface - one for the Stokes problem and the
other for the Biot problem. Such approach was first utilized for FPSI in [5] and
later used in [39/44] with the motivation to alleviate the difficulty of the so-called
added-mass-effect, which has been observed in FSI for certain parameter regimes
[21]. This effect may cause classical Neumann-Dirichlet split methods to become
unstable or the convergence of their iterative versions to deteriorate [5,21], see
also [6l28]129,3137] for partitioned FSI schemes that address this issue. It has
been shown that Robin-Robin schemes are more robust for wider ranges of physical
parameters [4l[5]. The algorithm developed in this paper differs from the methods
in [5,B9,[44]. Tt is inspired by a sequential Robin-Robin domain decomposition
method for the Stokes-Darcy coupling introduced in [27]. The key ingredient in
the design of the algorithm is an auxiliary vector variable used to approximate the
interface Robin data, which is modeled in a suitable norm. This avoids the explicit
appearance of the normal stress in the interface terms, which does not have sufficient
regularity for the stability of the sub-domain problems and lead to sub-optimal

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



Licensed to AMS.

A ROBIN-ROBIN METHOD FOR THE STOKES-BIOT MODEL 3

approximation in space and time. In its non-iterative form, our FPSI algorithm
requires the sequential solution of one Stokes problem and one Biot problem per
time step. The appealing features of this algorithm are modularity (one can use
their favorite Stokes and Biot finite element approximations), the option to use
non-matching meshes, and the reduced computational cost that comes from the
lack of sub-iterations. It is not unusual for non-iterative partitioned methods to
have stability issues or suffer from a loss of accuracy. We prove that our non-
iterative method is unconditionally stable and establish an error estimate for the
quasistatic model showing that the time discretization error is O(\/T At), where T
is the final time and At is the time step. We remark that in [5] the Robin-Robin
method is only studied computationally, while in [39,44] only stability analysis
is performed. Thus, to the best of our knowledge, this is the first result in the
literature on both unconditional stability and optimal time discretization error for
a non-iterative Robin-Robin split scheme for FPSI.

We also present the iterative version of the algorithm, i.e., at every time step
one iterates over the Stokes and Biot sub-problems until convergence. We prove
that the solution of the iterative method converges to the solution of a monolithic
scheme. The auxiliary interface variable converges to a Robin Lagrange multiplier
used to impose weakly the velocity continuity condition. To the best of our knowl-
edge, the resulting monolithic scheme has not been studied in the literature. We
prove that a unique and stable solution to the monolithic scheme exists. While
the iterative FPSI algorithm has an increased computational cost, it has the ad-
vantage of not introducing a splitting error while still allowing to recycle existing
fluid and structure solvers. For the monolithic scheme instead, one needs to imple-
ment a coupled solver. We assess the convergence, robustness, and accuracy of the
non-iterative and iterative Robin-Robin methods and the monolithic scheme with
two benchmarks: a test that features an exact solution and a simplified blood flow
problem.

We further remark that the FPSI problem is a generalization of FSI with thick
structure. Therefore, the techniques developed in this paper apply to the cor-
responding Robin-Robin algorithm for FSI, which is also new. In recent years,
alternative unconditionally stable non-iterative Robin-Robin methods for FSI have
been developed in [I7,I8,43], where discretization error of order O(v/At) is estab-

lished. An improved convergence of order O (At@ /T + log A%) is obtained in [16]

for a related model in a specific geometry. Our work provides a generalization and
an improvement of these results.

The remaining of the paper is structured as follows. Section 2l describes the
coupled Stokes-Biot problems. Section [3] presents the non-iterative Robin-Robin
algorithm, whose stability analysis is carried out in Section @l The time discretiza-
tion error analysis for the quasistatic model is presented in Section[Bl The iterative
version of the algorithm is developed in Section [fl The numerical results are dis-
cussed in Section [l Finally, conclusions are drawn in Section

2. PROBLEM SETTING

We consider a multiphysics model problem studied in [3] that describes the inter-
action of a free fluid with a flow in a deformable porous media. The spatial domain
Q c R%, d = 2,3 is the union of non-overlapping regions Q; and Q,,, see Figure[ll
Here, Q¢ is a free fluid region with flow governed by the Stokes equations and €,
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Qy

FIGURE 1. Schematic representation of a 2D computational domain

is a poroelastic material governed by the Biot system. For simplicity of notation,
we assume that each region is connected. The extension to non-connected regions
is straightforward. Let I'y, = 90Q; N 0, be the interface. Let (u,,p,) be the
velocity-pressure pair in (2., x = f, p, and let ,, be the displacement in €2,. Let
ey > 0 be the fluid viscosity, let f, be the body force terms, and let ¢, be external
source or sink terms. Finally, let D(uy) and o s(uys,py) denote, respectively, the
deformation rate tensor and the Cauchy stress tensor:

1
(21) D(Uf) = g(Vuf+Vu?), Uf(llf,pf) = —pr+2,ufD(ch).
In the free fluid region Qy, (uy,py) satisfy the Stokes equations
(2.2) promay =V -or(ug,py) =fp inQpx(0,7],
(23) V'UfZQf in QfX (O,T],
92

where 0; = #; and T' > 0 is the end of the time interval of interest. Let o.(n,) and
a'p(np, pp) be the elastic and poroelastic stress tensors, respectively:

(24)  oe(m,) = Ap(V-n,)I+2u,D(n,),  op(n,,pp) = 0e(n,) —appl,

where 0 < Apin < Ap(x) < Aoz and 0 < fiin < pp(X) < fimae are the Lamé
parameters and 0 < a < 1 is the Biot-Willis constant. The poroelasticity region
Q, is governed by the Biot system [§]

(2.5) ppOun —V - o,(n,,pp) = £, in €y, x (0,77,
(2.6) peK 'u, +Vp, =0 inQ, x (0,77,
(2.7) O (sopp +aV-m,) +V-u, =¢q, in €, x (0,7,

where 0y = 88—:2, so > 0 is a storage coefficient and K the symmetric and uniformly
positive definite permeability tensor, satisfying, for some constants 0 < ki <

kma:z: b

VEERY, kpin€ € < ETK(X)€ < ko’ &, VX € Q.

Following [5l45], the interface conditions on the fluid-poroelasticity interface I'y),
are mass conservation, balance of stresses, and the Beavers-Joseph-Saffman (BJS)
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condition [742] modeling slip with friction:
(28)  us-ng+ (dmn,+up) -n, =0 on I'y, x (0,77,
(2.9) — (oyny) -ny = pp, omy+opn, =0 onI'y, x (0,77,

(210) —(Ufnf)~‘rf7j:,ufozBJ51/Kj_l (uf—amp)-TM on Fpr(O,TL
where ny and n,, are the outward unit normal vectors to 9§, and 052, respectively,
754, 1 <j<d—1,is an orthogonal system of unit tangent vectors on I'y,, K; =
(K'Tf’j) Ty, and apyg > 0 is an experimentally determined friction coefficient.
We note that the continuity of flux (Z8]) constrains the normal velocity of the solid
skeleton, while the BJS condition (ZI0) accounts for its tangential velocity.

The above system of equations needs to be complemented by a set of boundary
and initial conditions. Let I'y = 0Q; N 0Q and '), = 092, N 0Q, see Figure [l Let
Iy = F]’? UF}V with |F?| >0and I, = TP UT) = TP UTl). We assume for
simplicity homogeneous boundary conditions: for every t € [0,T],

ufzoonlﬂ?7 afnfzﬂonF}V, npzooan?, a,,n,,:OonFéV,

p,,:Oonf‘I?, up-np:Oonf‘éV.

To simplify the characterization of the space for the trace uy|r; , we assume that

F? is not adjacent to I'¢,. In the case when they touch, the boundary condition

uy = 0 on I‘? needs to be imposed weakly by introducing a Lagrange multiplier

@ = osny on F]’? . We omit further details for this case. Finally, we set the initial

conditions

U.f(X,O) =uy in Qy, pp(x7 0) = pp,o(x),

M,(x,0) =1, 0(x),  9m,(x,0) = us0(x) in €.

Compatible initial data pyo for ps(0) and u,o for u,(0) can be obtained by
solving at ¢ = 0 a sequence of single-physics sub-problems satisfying the interface
conditions ([2.8)-2I0), see [1].

The solvability of the fully dynamic Stokes-Biot system with compressible Stokes
fluid was discussed in [45]. The well-posedness analysis of the incompressible qua-
sistatic system has been carried out in [I]. The proof extends easily to the fully
dynamic incompressible system (Z2)—(210) considered here.

Let (-,-)s, S C R, be the L?(S) inner product and let (-,-)p, F C R"! be
the L?(F) inner product or duality pairing. We will use the standard notation for
Sobolev spaces, see, e.g. [26]. Let

Vy={vye(H" Q)" :vy=00nT7}, W;=L*Qy),

V, ={vp € H(div;Q,) : v, - mp|r,, € L*(Tsp), vy -0, =0 on f’év}, W, = L*(Q,),
(2.12)

X, = {€, € H'(Q,)" : €, = 0 on TP},

where H (div;(,) is the space of (L?(£2,))%-vectors with divergence in L?(Q,) with
a norm

(2.11)

VI (aivi,) = V172, + 1V - VIZ2(o,),
and the space V), is equipped with the norm

(2.13) V1, = IV 1B,y + IV - B l3acr, -
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3. ROBIN-ROBIN NON-ITERATIVE PARTITIONED ALGORITHM

For the solution of the coupled problem presented in Section 2] we consider
a Robin-Robin splitting algorithm motivated by the method proposed in [5]. For
this, we rewrite the coupling conditions (2.8)—(21I0) in the equivalent form of Robin
conditions. To simplify the notation, consider a single tangential vector 7 and let
vpss = VK /(ufapss). Let v¢ > 0 and 7, > 0 be given combination parameters.
For the fluid sub-problem, we consider the following Robin transmission conditions

(3.1a) vrup-ng + (omyg) -ng = —vy (6t77p + up) ‘n, + (opny,) - Ny,
(3.1b)  ypup-Tp+ (L+ypyBas) (ong) - 75 = —vp0m, - Tp + (opny) - Tp,

while the transmission conditions for the poroelastic structure are

(3.2a) ~p(up + 8t17p) ‘ny, + (opny) -ny, = —yuy-ny + (ony) -ny,
(3.2b) YpOiny, - Tp + (opny) - Tp = —ypuy 7p+ (1 —pypys) (omy) - 7y,
(3:2¢)  w(up+aim,) 1y —pp = —ypus-ns+(omy) -0y

To simplify the notation, let

af(up,vp) = 2uD(uy), D(vy))a,,
ag(upavp) = (ﬂfKilupvvp)va
G’Z(npv 61)) = (QMPD(np)ﬂ D(&p))ﬂp + (Apv ’ np’ V- £p)9p
be the bilinear forms related to Stokes, Darcy, and the elasticity operators, respec-
tively. Let
be(v,w) = —(V-v,w)q,.

Using standard techniques involving multiplication by suitable test functions and

integration by parts, as well as the interface transmission conditions B.I)—(32), we

obtain that the solution of the system (Z2)-ZI0), (uz,py,n,, up,pp) : [0,T] —

Vi x Wr x X, x V), x W), satisfies the following variational formulation in Q: for

each t € (0,7] and for all (vy,wy) € Vy x Wy,

(rdeay,vi)g, +ag(ug,vy) +bs(vy,py)
+yuy - ng, Vg, Uy T VT,

3:3) =&, vy)a, = ((@my, +up) - mp, vy -mp)r,, + ((opnp) -0y, vy-np)r,
=75 (0my, - Tp, Vi Tr)rg, + ((Op0y) Ty, Vi ThTy,
—vrvBas{(omy) TV Tr)rg,,

(34) - bf(uf, wf) = (qfv wf)Qfa

Similarly, in €, it holds: for each ¢ € (0, 7] and for all (£, vy, wp) € X, x V, x W),

(Ppattnp’ Ep)gp + a;(np? ép) + aﬁ(up’ vp) + O‘bp(épapp) + bp(Vps Pp)
+Yp((up + at"lp) ‘ny, (v + €p) “np)r,, + ’Yp<at"7p “Tp &y )Ty,
(3.5) = (fp>£p)ﬂp + <(_7puf + o'fnf) ‘g, (vp + £p) : np>Ffp
- '7p<uf : vaép : T;D>Ffp +(1— ’Yp'YBJS)«Ufnf) : T.f’ép : Tp>Ffp’
(3.6) 50(8tppva)ﬂp - O‘bp(atnpa wy) — by(uy, wy) = (gp, wp)Qp-

Licensed to AMS.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



Licensed to AMS.

A ROBIN-ROBIN METHOD FOR THE STOKES-BIOT MODEL 7

In the above, we assume that the solution to (Z2)—(ZI0) is sufficiently smooth, so
that all interface bilinear forms are continuous.

Let T¢,5 and 7, be shape-regular finite element partitions of 2y and €, re-
spectively, consisting of affine elements with maximal diameter . The two meshes
may not match along I'y,. For the space discretization we consider a stable Stokes
finite element pair V¢, x Wy C V¢ X Wy, a finite element space X, ;, C X, for
the displacement, and any stable Darcy pair V5 x W, C V, x W,. Examples
include the Taylor-Hood or the MINI elements for V¢, x Wy, continuous piece-
wise polynomials for X, ;, and the Raviart-Thomas or the Brezzi-Douglas-Marini
elements for V, 5, x W, 1,. See [10] for further details.

Remark 3.1. In the following, in order to simplify the notation, we suppress the
subscript h from the variables.

For the time discretization, we consider a uniform partition of [0,7] with time
step At = T/N and t,, = nAt, n = 0,...,N. Let ¢" = p(t,). For n > 0, let
dﬂp"—"_l = (30"4_1 — (pn)/At Let dtt'n;’“ = dtdtn;l+1 = (dtng—i_l — dt’f]g)/At for
n > 0. Note that dyn) ' = (' — 20y +np~")/At? for n > 1, while for n = 0,
dinY) := Pxu,, using the initial condition (ZII), where Px : (L*(2,))* — X, is
the L2-orthogonal projection.

Next, we present a time-splitting Robin-Robin algorithm that is similar to the
iterative scheme introduced in [5]. At every time t"*!, n = 0,...,N — 1, the
Robin-Robin algorithm involves solving decoupled fluid and poroelastic structure
sub-problems:

(1) Stokes problem: find (u?“,p?“) € Vi, x Wy, such that for all (vy,wy) €
Vfﬁh X Wf’h,

1 1 1
(prdeuyt va)Qf +ap(upth ve) +bp(vy i)

+p T ong, vy g, (0T vy T,

= (fr,ve)a, —vr((dimy +uy) -ny, vy -ng)r,, + ((opnp) -1y, vy ng)r,,
—vpldemy - Tp, Ve Tr)ry, +{(Opmy)  Tp, Ve Th)T,
—vypas{(@fng) Ty Ve Tr)r,,,

- bf(u?+17wf) = (qf>wf)Qf7

which is the backward Euler finite element approximation to (33])—(B4]), where the
interface quantities from the Biot region as well as the term vsypss(ofny) - Ty
have been time-lagged. In other words, this is a Stokes problem with the following
Robin boundary conditions on I'f,:

(3.7a) it mp+ (o} ng) np = —v; (dimp +up) - ny, + (opny) - ny,
vfu?ﬂ -Tf+ (O'?Jrlnf) Ty + ’Yf’YBJs(O'?nf) Ty
(3.7b) = —ypdiny - Tp + (gynp) - Ty
sing the initial conditions ,at n =0 we set = o for any variable
Using the initial diti 0 0 Pyopo f N4 iabl
, where 1s the L=-orthogonal projection onto the corresponding finite element
here P, is th L? h 1 jecti h ding fini 1

space, with a'?c and o'g obtained from (2.1]) and (2.4)), respectively. We also recall
that dyn) = Pxu,.
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(2) Biot problem: find (ppt*, uptt, pntl) € X, 5 x Vy, , x Wy, j, such that for all
(&), Vpywp) € Xpp X Vi X Wy,
(dettng+lv €p)Qp + a;(r’;}‘*‘l, £p) + az(uZ"H, vp) + abp(ép?]g;,nl-‘rl) + bp(vapZ+1)
+ 'Yp<(u$+1 + dmZ“) 1y, (vp + €p> ’ np>1“fp + 'Yp<dt"7$+1 *Tp €p : Tp>1“fp
= (fpafp)ﬂp + <(_'Ypu?+1 + U?-an) ‘g, (vp + €p) : np>1“fp
— (T 6 Ty, + (L= pysas) (@ ) 75,6 Th)ry,,
SO(dtszrla wp)ﬂp - O‘bp(dthJrlva) - bp(uerlva) = (ap, wp)Q,ﬂ

which is the backward Euler finite element approximation to ([B3)—(@38]), where
the interface quantities from the Stokes region are obtained in the previous Stokes
solve. In other words, this is a Biot problem with the following Robin boundary
conditions on I'f,:

(3.8a)

V(g™ + dmi ) - ny, + (07 n,) 0, = —vpu;}“ ‘ng+ (o-}““lnf) ‘ny,
(3.8b)

Wiy Ty + (o ny) Ty = —pu T+ (1= pysas) (0 ing) - Ty,
(3.8¢c)

'Yp(ug—i_l + dt"?;?—i_l) sy _p;H_l = _'Ypu?-H ‘ny + (U}H_lnf) ROE

We note that the above algorithm involves o fn¢ and opn, on I'f,, which in the
continuous setting may not belong to L*(T's,), while in the finite element method
they require postprocessing from the primary variables and may result in loss of
accuracy. Moreover, the algorithm is difficult to analyze in this form. Motivated
by the Robin-Robin iterative algorithm for the coupled Stokes-Darcy flow problem
developed in [27], we consider the following modified algorithm.

Let T¢pn be the partition of I'f, obtained from the trace of 7;5. Let Aj C
(L*(Tf,))? be a finite element space on Ty, defined as

(39) Ah = V.f;h|rfp'
For 0 < n < N, we introduce an auxiliary interface variable pu" = (ul, u) € Ay,
where py = p” -ny and p = p™ - 7 are used to approximate the Robin data on
I'p. In particular,
(3.10a) pny =~ =5 (dimyy +ap) -0, + (opmy,) -0y,
(3.10b) pr = —=ypdimy - Tp + (opny) - T, — vpyBIs(ofng) - Ty
The Robin-Robin non-iterative partitioned algorithm is as follows.
Algorithm 1. Let, for all x € Ay,
</1*9u Xn>l“fp = <_’7f(dtng + ug) ‘N + 0'21’11, sy, Xn>Ffpu
(W2, X7)r,, = (—vpdim)y - 7 + oony, - 7, — Ypypas(oiny) T XS,
where we assume that the initial data is sufficiently smooth.
In the above, and in the following, we write the two equations separately for
clarity, with the understanding that they represent a single equation for u°, i.e.,

the sum of the two equations holds.
Forn=0,...,N —1, solve
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(1) Stokes problem: find (u ”+1,p}l+1) € V,xW;, such that for all (v, wy) €
Vﬁh X Wﬁh,

(pfdtu?+1,vj')ﬂf + af(u}”rl,vf) +bs(vy, ?H)

Fyp(u g, v eng)r, Fyp T T v T,
(3.11) = (fr,v)a, + (s Vi -np)r,, + (Ur, Ve Tr)T,,,
(312) —b ( n+17wf) = (vawf)ﬂfa

which corresponds to the weak imposition of the Robin boundary conditions
onyp:

(3.13a) ”qu?H ny + (‘T"+1nf) Ny = iy,
(3.13b) a4 (o ) Ty =l

(2) Biot problem: find (pyt*,uitt pntly € Xy p, Vpn, Wy such that for all
(gpavpawp) € Xp,h X Vp,h X Wp,hy

(Ppdemy ™€) o +ap(np ™€) + ag(uy ™, v,) + aby (€, pp ™)
+0p (Vi )+ p((up T+ dimp ) oy, (v +€,) - mp)ry,
+ ’Yp<dt77$+1 “Tp, &, Tp)Ty,
(3.14) = (£5,€,)0, + (i — (p +yp)uft ny, (v +€,) - mp)ry,
+ (= (T = wysas(o ng) T 6, Ty
(3.15) SO(dtpgJr )Q —ab (dtranrlv p) — bp(ug+1 wy) = (g, wp>(2

Lyp’

which corresponds to the weak imposition of the Robin boundary conditions

onLyp:
Tp(uy P td 77n+1) n, + (o n+1np) "1p
= ppy — (v + ) ny
(3.16a) = —vpuf -nf+(af+1nf)~nf,
vpdmZ “Tp T+ ( "in p) " Tp
=pr—(p+ W)u}m T —wysas(ong) Ty
(3.16b) = —vpu?ﬂ T+ (1- ’yp’YBJS)(O"r;+1nf) TS,
w(uytt +dimy ™) ny — py
= iy~ (% +’Yf) [ Y
(3.16¢) = —puyttong + (Uerlnf) “ny,

where the second equalities in [B16a) and BI6d) are obtained from ([B.I3al)
and the second equality in ([BIG6D) is obtained from (3.I3DJ).
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10 A. DALAL, R. DURST, A. QUAINI, AND I. YOTOV

(3) Update: for all x € Ap,

(3.17a)
G o, = (= (o ) (o™ ™) om0 omg) )y
(3.17b)
<u:}+17 XT>Ffp
= (17 = (v + ) (™ mp + 0 T ymas (0 ) ) X )

Remark 3.2. Equation ([BI7), combined with the first equalities in (BI6al) and
(3.I6h), implies that

(318a) ™t = =y (demy ™+ wph) np + (0 g my,

(3.18b) /~L¢+1 = _’)’fdt"lgJrl “Tpt (Unglnp) "Tp— ’Yf’)’BJS(U}hLlnf) “Tfe

Remark 3.3. The second equalities in (B.16]) indicate that the Robin conditions (B.8))
are weakly imposed in the Biot sub-problem. The expression (3.I8al), combined with
BI3) indicates that the Robin conditions ([BI1) are weakly imposed in the Stokes
sub-problem. We emphasize that BI13), BI6]), and (BI8) are not used in the
forthcoming analysis. Only BI7) is used.

Remark 3.4. Assuming that f; € (L2(Q4))4, qf € L%(Qy), £, € (L?(2,))%, and ¢, €
L2(€,), the well-posedness of the sub-domain problems BII)-@I2) and BI4)-
(BI3) can be shown using standard techniques for the Stokes and Biot systems,
respectively, using the classical Babuska-Brezzi theory [I0]. We emphasize the
inclusion of the term ||v - m, | z2(r,,) in the norm of V,,, cf. ([ZI3). Control of this
term is obtained from the term ~, (™ +dmp ') -ny, (v, +£,) -np)r,, in BI).
More precisely, this gives control on H(u;j*l + 77;*1) ‘1 |lL2(r,,). Then, the bound
on ||u;;Jrl “1p|z2(r,,) follows from the triangle inequality, the trace inequality, and

the bound on |2 *+|| 1 (q,).-

4. STABILITY ANALYSIS

In the stability and error analysis we consider the case vpss = 0, which corre-
sponds to a no-slip condition as it is typical in fluid-structure interaction. Moreover,
we assume that vy = 7, = 7. Also, for simplicity, in the stability analysis presented
in this section we consider no forcing terms, i.e., f = f, =0 and ¢f = ¢, = 0. In
the analysis, we will use the identities

(4.1) ab = i ((a+b)*—(a—1b)?),
(4.2) ala—b) = %(a2 — 0%+ (a—b)?).

We note that, due to the choice of Ay [B9), (BI7) implies

n n n n n+1
o () () e () (52 )
where Py, : (L2 (Ffp))d — A, is the L?-orthogonal projection satisfying, for any
@ € (L*(Tpp))?,
(4.4) <PAh<p — @, X>Ff,, =0 Vx €Ay
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A ROBIN-ROBIN METHOD FOR THE STOKES-BIOT MODEL 11

A scaling argument similar to the one in [30, Lemma 5.1] shows that Py, is

stable in || - || g/2(p,,):
(4.5) ||PAh,<P||H1/2(1“fp) < CA||<P||H1/2(rfp) Ve € (Hl/z(Ffp))d-
We define the following energy terms, which will be used in the stability estimate.
Let
£" = Lt 3aca) + 2N oy + S M0 + S B,
(46) L R 1
(4.7) D" = [lu}|} + [[up |13
§" = %Ildmz —dmy 32, + %Hu? —u} 2o, + %HUZ -y 2
(4.8) + 2lps =7y e,
where
Vil = ag(vi,ve) = 20 IDVAIG, s 1VpllE = ap(vp.ve) = ps K720, )13,

1,112 := a%(€,,€,) = s/ *D(E,) 13, + [IA/°V - &, II3, -

The assumptions on the coefficients imply that there exist positive constants cy,
¢4, and ¢, such that

(4.9)
Vel = crlvillzne,) Yvr € HY(Qp),  1vpll7 = callvpllizq,) ¥vp € L2 (),

||£p||2 > Ce”&p”ill(ﬂp) V&p € Hl(Qp)7

where Korn’s and Poincaré inequalities have been utilized in the first and third
inequalities, using that |F? | > 0.

Theorem 4.1. The following energy inequality holds for Algorithm [I:

N N
(4.10) EN ALY Dr+ )y st<el
n=1 n=1
Proof. Taking vy = u}*! and wy = p}”l in BII)-BI2), we obtain
(4.11)
Pf (i nt1 +1 +1 e+l
E(u? —uj,up )Qf +oap(up™ )
1 1
_ +1 +1 +1 +1
= ;<M2 — g,y nf>1‘fp ;<”¢ —uyT Ty Uy 'Tf>1“fp
1 1
— [ [ gy
4y Tfp " 4y Tfp " J !
SR S
4v Jr,, ! 4y Jr,, T ! ’
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12 A. DALAL, R. DURST, A. QUAINI, AND I. YOTOV

where we used (4] in the last equality. Taking v, = u;”‘l, wy = pg“ and

¢, =dimy " in (B14)-BI3), we obtain

(412
At = (demy ™ — demy, deny )
1 n n 1 n n n n
+ gyt ) + A—tSO(pp+1 —pp, vy e, +ap(upttuptt
1 n n n n n n
= Sl = (™ demp ™)y — 2y (g dep ) my)y
1 n n n
+ ;(m vy Ty = 2t ydey Ty
1 n dmt +urtl) . n u?™l . n
= ; <(ZZ> - VPAh <( 2S,r’pdt,’,]n+1p,’_p) P — 2’)/ u{?"'l . T; ;
d nn+1 + un+1 n
FYPAh <( ! dt,’,]n-i-l ) b
Cip
N A AL NS C L e
dt,n;H»l Ty Ap dt,nn+1 Ty )
(dt,r,n—i-l + un+1) -n, B (dt,r,n—i-l + un+1) n,
d,mrt1 PAh d,nntl. )
U "Tp tTp Typ

where we used ([@4]) in the last equality. Then, using ([@1]) and (E:%]), and dropping
the last term in ([@I2), we obtain

1

At E(dimy ™ = dimy . dimy )+ é%(n?“m?“ ny)
+ éso(pgﬂ _pprH)Qp + %(UZH,“ZH)
(4.13) < % Ffp( . 2711”“ ny)? - % /Ffp(’uzﬂ)
b Lt / iy
Summing (ZI1) and (AI3) and using @2)) gives
Lt a e, + b (T - w g - whe,
+ap(upthupth) +ad(urt upt)
2At(dt’7n+1 dtnnH)Q +E(d 77nJr1 dtnp’dt"?nﬂ dimy)a,
) can () g,
R A A AR M s
< L e, S (e e, + 5 a0 + 5 (B ),
t i NG = [ G
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A ROBIN-ROBIN METHOD FOR THE STOKES-BIOT MODEL 13

Finally, multiplying by At and summing over n implies

p p 1
Qf (uf, uf)q, + f(dmif,dmp )o, + 5@ c(my,my) + 5 (Pév,pév)sz
N—-1
At N\2 At n+1 n+1 n+1 n+1
e [ T [ A gy e g )
Tsp Cyp n=0

p n n n P n n
Z ( L ( (dim, 1 dtnp)dtnp+1 —dimy)a, + ?f( ?H —uf,uf”rl —uf)q,

1 n n n n n n
5 (T’p+1 np7np+1 - T’p) 2 (pp+1 _pp7pp+1 _pp)Qp)
P p 1 s
Qf(“fv“?f)ﬂf o (dimy, dimp)a, + S ag(mp,mp) + 3 (0, py)e,
At At
| )+ —/ (12)?,
47 Cfp 4’7 Csp
which gives (I0). O

Bound (EI0Q) provides control on u}, uy, py, n,,and d;ny,. Bound on ||p?||L2(Qf)
can be obtained using that Vi, x Wy, is a stable Stokes pair satisfying the inf-sup
condition [34, Lemma 4.1]

br(ve,w
(4.14) wa S WfJL, sup M > BwafHLz(Qf).
VfEVf,;L:th‘fp:o ||VfHH1(Qf)
Additionally, the control on pj; depends on s, which in practice can be very small.
A bound on py independent of s can be obtained from the discrete Darcy inf-sup
condition [10]

b
(4.15) Yw, € Wy p, sup bp(vpwp)

> Bpllwpllr2(a,)-
Vpevp,iz3vp|1“fp:0 ||Vp||H(diV§Qp) g : ()

We further note that the At scaling in the terms AtHunNH%Q(FN) and At||,uJTV||2L2(Ffp)
in EN, cf. (@G), implies that the stability bound on || || z2(r,,) and [|uN || z2(r,,)
obtained in ([@I0) scales like VAt=1. A stability bound on p™ that is optimal with
respect to At can be obtained in the norm || - ||z -1/2(p,,), which is the dual of
| ll1/2(r,,)- For simplicity, we present the arguments for the quasistatic Stokes
model, where the term pf(dtu}‘ﬂ,vf)gf in @II) is not present. Let £ be £™
without the term %Hu?HQLQ(Q” and let

"= [l + g+ 197120, + 6" 2,y + 19511220,
Theorem 4.2. The following energy inequality holds for the quasistatic Stokes
version of Algorithm [

N N
(4.16) EN ALY DM+ Yy ST < e
n=1 n=1
Proof. A bound on |[p}|/L2(q,) can be obtained from (£14) and (B.II). Noting

that the restriction v¢|r, = 0 in (£I4) eliminates all interface terms in ([B.11]), we
obtain

(4.17) 1P L2y < ClF 5 ay)-
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14 A. DALAL, R. DURST, A. QUAINI, AND I. YOTOV

Similarly, (£I3) and ([3.14) with §, = 0 imply
(4.18) Iy 22 (,) < Cllup ™ 22(q,)-
Next, we have

n B (o, u™)r,, (P, 0™)r5,
I =12,y = sup T = sup —
pE(H/2(Typ))e ||‘P\|H1/2(Ff,,) PE(H/2(T ) ||<P||H1/2(1“fp)

Pa, o, "
< Oy sup < AP P >Ffp .
ee(m /20 ) [1Pa Pl

Since A}, = Vf7h|rfp, there exists a discrete Stokes extension E¢p : Ay, — Vg
such that for each x € Ay, Ey 5 x|r;, = x and ||Ef,hX||H1(Qf) < Cea;tHXHHl/Q(Ffp).

Therefore,
EqpP T
||H7L||H*1/2(I‘fp) < ONClont sup < iR AL P >Ffp
pe/2(r ;) [ErnPa, el ;)
Vi, "1,
(419) SCACezt sup < f H >FJP

Vi€V R ||VfHH1(Qf)
<C (||u7fl+1||H1(Qf) + ||p7fl+1||L2(Qf)) 7

using (BI1)) for the last inequality. Bound (418 follows from combining ({I7)—
(A19) with (EI0). O

Remark 4.1. In the fully dynamic model, in order to control ||p}”rl ll22(q,), we need

first to bound Hdtu}”lH 12(Q;), Which can be done by applying the discrete time
differentiation operator d; to the entire system. We omit further details.

Remark 4.2. There is no restriction on At in the bounds obtained in Theorems [£.1]
and 4.2 implying unconditionally stability of the non-iterative Robin-Robin method
given in Algorithm [l A key component for this property is the introduction of the
auxiliary interface variable p in (BI0), which allows us to control the splitting error
in the Stokes problem boundary conditions

vu;ﬁﬂ ‘ny+ (a’?“nf) ‘np=—vy (dmg + u;’) ‘ny, + (o,n,) -0y,

o Tp+ (o ng) Ty = —adimy Ty + (opmy) - T
1 1
In particular, the terms —/ (uZ—?vu?H ‘ny)? and — (/ﬂ—2’yu}l+1 T)?
47 Typ Y Typ

appear in both the Stokes [@II)) and Biot (@I2]) energy equations and cancel out.
In addition, the specially defined update ([BI7) results in a telescoping sum for
p when the two equations are combined. We would also like to emphasize an
important difference with the unconditionally stable FSI methods in [17, 18} [43],
where the boundary condition in the second solve (which is Stokes in these papers)
is
fyu;ﬁ‘|r1 + U?an = ’ydm;‘+1 +o'ing.

This allows for them to write ”y(u;ﬁ'|r1 —dmptt) = oing — U?an, which is used
in the stability analysis. We note that the most recent value of 0';}“ is not used in
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A ROBIN-ROBIN METHOD FOR THE STOKES-BIOT MODEL 15

the Stokes boundary condition, which results in additional time-splitting error. In
contrast, the boundary condition in our second solve (which is Biot) is

1 1 1 +1
'ydm;;Jr + a'g+ n, = yu?'*' +o% " ny,

which does not induce extra time-splitting error.

5. TIME DISCRETIZATION ERROR ANALYSIS FOR THE QUASISTATIC MODEL

In this section we analyze the time discretization error in the Robin-Robin

method given in BII)-BI12), BI4)-BI5), and BI7). To this end, we con-

sider the semidiscrete continuous in space version of the algorithm and compare
its solution to the variational formulation (B.3)-@.0). In addition, for the sake of
simplicity, we focus on the quasistatic model, where the terms py9;uy and p,dun,
are omitted. In this section we assume that I'y, is at least C*.

Introducing the continuous versions of u, and g, from EI0),

(5.1a) pn(t) = —’Y(atrlp(t) +uy(t)) 0y + op(t)n, -0y,
(5.1b) e (t) == —'y(‘?mp(t) “Tp+op(t)n, - Ty,
the system [B3)-(B0) in the quasistatic case can be rewritten as

ap(ug,vi) +bp(vy,pp) +y(up-np,ve-npr,, +y(up- 75,V Tr)ry,
(5.2) = (£, vy)a, + (s v -0p)r,, + (e, Vi - Tp)Ty,
(5.3)  —bs(up,wy) = (a7, wr)ay,,

a;(n[)’ ép) + aﬁ(up’ vp) + O‘bp(épapp) + bp(Vps Pp)

+y{(u, + 3mp) 0y, (v + gp) : np>1“fp + 'Y<6t77p “Tp, Ep : Tp>Ffp
= (fp, Vp)Qp + (n — 2vuy - myp, (vp + €p) ’ np>Ffp
(5.4) + (r — 2yuy T &y Tp)Tyys
(5.5)  s0(0pp, wp)Qp - abp(ﬁtnpva) — by (up, wp) = (gp, wp)9p~
Let us define the error terms for i = f, p as follows:

U?-H = Wi(tpy1) — uZH_l’ Pin+1 =pi(tn+1) _p?-&-l’ HZJFI = np(tn+1) - 77;+1-

Additionally, we define a splitting error and a time discretization error operator
acting on the exact solutions as follows:

Sn+1(¢) = ¢(tny1) — ¢(tn),
T (¢) i= 0y p(tni1) — ded(tnir),

where we recall did(t,11) = W We note that the argument of T"*! can
be either a vector or a scalar. Next, we define variations of u,, and p, with discrete
time derivatives:

(5.6a) fin(tn) = _'Y(dt"lp(tn) +up(tn)) -0y + op(tn)ny - ny,
(5.6b) L (ty) == —vdmp(tn) T+ op(ty)n, - Tp.
Consequently, it follows that
(5.7a) tin(tn) =fin(tn) — 'YTn(np) ‘1p,
(5.7b) pr(tn) =fir(tn) — VT”(%) “Tp-
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16 A. DALAL, R. DURST, A. QUAINI, AND I. YOTOV

We define the interface error terms:
(5.82) M = fin () — p0,
(5.8b) M = i (ta) — pi.
Consequently, we have
() = 10 = (i (ts1) = fin (b)) + i (t) — 2
— S (1) + fn(tn) — fin(tn) + fin(ta) — p

(5.9) = 8" () — T (m,) - mp + My,
and, by the same argument,
(5.10) pir (bn) — i = S (1) = 4T () - 7 + M.

We note that in the continuous in space case considered in this section, the update
[@3) simplifies to

(5.11) = = 2 ((demy ™ gt g 0 ny),
(5.11b) Pt =t =2y (demitt T, + u}”rl ).

Theorem 5.1. Assuming that the solution to (Z2)-ZI0) is sufficiently smooth,
the following error estimate holds for the quasistatic continuous in space version of
Algorithm [I:

N 1/2 N
(max ([Hplle + 15 [[22(2,)) + (At > ||U’;||§> + (At 3 ||Ug||3>
o n=1 n=1

N 1/2 N 1/2
+ (Atz ||P}l||iz(szf)> + (Atz |P£||2L2(Qp)>

1/2

n=1 n=1

(5.12)

N-1 1/2
+ (At Z ||Mn||fql/2(rfp)> = O(VTAY).

n=0

Proof. Subtracting BII)-BI12) from G2)-E3) at ¢t = ¢,41 and applying (5.9)
and (B.10) yields

ar (U, vy) +bp(vy, PR +4(UF ng, vy ong)r,
+ (U Ty v T,
= (Un(tns1) = pim, vy - nf>Ffp + {pr (tng1) — py, vy 'Tf>1‘fp
(5.13) = (M}, vy ng)r,, + (M7, vi-Tr)r,,
+ (S" () = T™(m,) - p, vy -mf)r,,
(S (pr) = AT (M) - Tpy Vi - T )T,

(5.14) — by (U wy) = 0.
Take vy = U’}H and wy = PJF'H in (BI3)-(EI4) and add them up to obtain
(5.15)

ap(UFTL U + (UG ny, U mg)ry, (U7, U m)ry,
= <Mr?7 U?Jrl ' nf>Ffp + <M‘?7 U;‘L'Jrl ’ Tf>Ffp + Il’
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A ROBIN-ROBIN METHOD FOR THE STOKES-BIOT MODEL 17

where

I o= (8" () =T (m,) -1y, U omp)p
+ <Sn+1(/i‘r) - ’yTn(np) *Tp, U?Jrl f>FfP

We can manipulate (5I5) as follows:

(5.16)

1
1 1 1
ap(UFHL, UG = ;(Mff — U np AU ng)r,,
1
+ ;<M.:L —’7U?+1 -Tf,’yU?-Jrl . 'Tf>rfp +Il.
By applying (1)), we have

n n 1 n n n
ap(UFH, UG = 4_(||Mn 22, ) = 1M} =290 nglTar, )
Y P ?
(5.17) )
+ E(HMfH%%rfp) — M2 = 29U 1y, ) + 1

For the Biot problem, subtracting B14)-BI5) from GA)—EEH) at ¢ = ¢,41, we
obtain

ae(HnJrla'S )+ d(UnJrl )+abp(€p7P,f+1)+bp(Vp7P;f+1)
<(Un+l +d; Hn+1) ny, (Vp + £p) ) np>F_fp
+ (T (n,) 1y, (v +€,) -np)ry,
<dtHn+1 Tp7£ Tp>l“/p + 7<Tn+1(77p) Tpvf >Ff,,
< n(tng1) — oy — 2’)’Un+1 ny, (v, + 5 ) - np>Ffp
(5.18) + (e (tur) = g = 20U 70, € - To)ry,
SO(dtP;H_la wp)Qp + SO(Tn-i_l(pp)v wp)ﬂp
(5.19) — abp(dtH;LH,wp) — abp(’JI‘"H(np), wy) — bp(U;LH,wp) =0.
Letting v, = Up*tt, £, = dtHZ‘H, and w, = P/ in (5I8)-(EI9), adding them
up and using ([@.9) and (&I0), we have
ag(Hyt deHy ™) + so(de Pyt Ppthg, + ag (Upth, Upt)
+ (U + d Hy Y -y, (Up T+ d H ) - mp)py,
+ 7<dtHZ+1 ST, dtHZJ’_l “Tp)Ty,
= (M} — 29U -y, (U + d H MY )y,
+ (M} = 27U 7y d H Y Tp)r,
+ (S" M () — yT"(n,) - np, (U;H'1 + dtHZH) “np)r,,
+ (8" (1r) = AT (m,) - Ty e H - Tp)ry,
- 7<Tn+1(77p) ‘yp, (UZ+1 + dtH;)L—H) ) np>Ffp
WT () Ty, deHY - Ty,
= so(T" " (pp), Py )a, + aby (T (), Py*).

(5.20)
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18 A. DALAL, R. DURST, A. QUAINI, AND I. YOTOV

Equation (5.20) can be rewritten as follows:
(5.21)
al(HP ™ d HIY) + so(d PP Potl)g, + al(URTE URHY
= (M = 29U - np — (U + 4, H)™) -y, (Up ™+ d H 'Y - my)
+ (M} = 20U 7y —yd Hy ™y d HY ™),
+ (AL (UM + G HYY) cny)r,, + (An de HE 1)y, + D,

Csp

where

(5.22a) A7 = S" () — (T () + T (m,)) -y,

(5.22b) AT = S" (uy) =y (T"(n,) + T (n,)) - T,

(5220) IQ = —sO(T"+1(pp), P£L+1)QP + abp(Tn+1(np)a P;:LJrl)'

Using (1)), we obtain from (G21)):
ag(Hyt dHy ™) + so(de Pyt Pyt g, + ag (Up T, UpT)

1 n n
= HHMn - 29U nf||2Lz(rfp)

1 n n n n
(5.23) = 1M = 29U my = 2y (U ) -yl
. L )
+ gl - 1 S A Y RT

= I =2 U ey — 2 H
+ (A (U o+ dH ™) o0y gy o (A7 d H 7y, o+ o,
For the second term on the right-hand side above, we have
(5.24)
M — 27U’J}+1 ‘ny — 2y(Uptt + dtHZH) ‘1,
= fin(tn) — pn — 270f(tns1) -np — 29(Wp(tny1) + Oimy,(tnt1)) - my
+ QVTnH(Up) ‘n, + 27u}1+1 ‘ny+ 27(u;‘+1 + dt"?ZH) ‘n,
= fin(tn) — s + 29T (n,) -1y — ™+ iy
= fin(tn) + 29T () -0y — i = fin (1) + fin (1)
=T (n,) -0y +9T"(n,,) - 0y
= fin(tner) = = (B (tagr) = 7T () - 1p) + (B (tn) —7T" () - 1p)
+ (T (n,) + T (m,)) - 1y
= My = 8" () + (T (my) + T (m,)) - my
= M+t — A7,
where we have applied (5.8a), (Z8)), ((I1a), (E7a), and (B22a). By an analogous

argument, we have

(5.25) M = 29U rp = 2yd, Hy oy = M — A7

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A ROBIN-ROBIN METHOD FOR THE STOKES-BIOT MODEL 19

Applying (B24) and (B28) to (523)), we obtain

a;(Hn+1 d Hn+1)_|_80(d Pn+1 Pn+1)ﬂp —I—ag(Ug+1,UZ+1)

1

1 12
= —HMn - 29U nf||L2(1‘fp WHMTTLLJF Iz2(r,)

n n 1 n
+ _HMT - 27Uf+1 'Tf||L2(Ffp) - EHMTH”zL?(rfp)
(5.26) i

27 <An Mn+1 + 27(U;+1 4 dtHZ+1) . np>

%<A¢, M4 27dtHZ+1 Tp)
1 n n
- _HA ||L (Tsp) ||A ||L2(Ff )+I2

We note that, using (5.22al) and (5.22D)), I; may be rewritten as

1 n n 1 n n
I :ﬂ<An’ 2’yUf+1 . nf>1"fp + E<AT727UJ£+1 .Tf>1“fp

+ <7Tn+1(np) : nP’U;‘hLl ’ nf>Ffp + <7Tn+1(np) ! T;D’U;LJrl ' Tf>Ffp'

Next, we combine (5:26]) and (B.I7) and use the above expression to get

(5.27)
ag(Hpy ™ d Hy ) + so(de Py, By g, + ap (U, U 4+ ad(Up Ut

1 1
= H(ll Myl Ze, ) = IME e, ) + H(HMfH%(rh) = IME L, )
+

M YU g 2y(US 4 d ) my, AD)

2,)/ n/Usp
1
+ E<Mf+1 + 290U 4 29d HY o, AT,

1 1
- EHA’VHL||%2(Ffp) - HHAZH%z(rfp) + 1 + I,

where
(5.28)  I3:= (yT""(n,) - n,, UFT -np)p, + (7T (n,) - 7, UFH - 7p)r,-
From (524) and (528), it follows that

(5.29a) M 4 29U oy + 29(Up T+ d H 'Y omy, = M+ AR
(5.29b) MM 42U 4 2yd HY T, = M+ AT
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Therefore, combining (5.27) and (529, we have

(5.30)
ag(Hy ™ d Hy ™) + so(de Py, Byt o, + ap (U, U + ad(Up Ut

1 n n 1 n n
= g (G e, ) = 1M ey, ) + g (1 e, ) = 1M iy, )

1 1
+ %<Mg + A?L7AZ>Ffp + _<Mf + A¢7A¢>Ffp

2

. .
- EHAn”QL?(rfp) - EHAT”%%F&) +1I+ 13

1 n n 1 n n
= g G e, ) =~ I ey, ) + g (1 g,y = 1M+ )

1 n n 1 n n 1 n|2 1 n||2
+ %<MnaAn>Ffp + ﬂ<MT’AT>Ffp + EHAn”Lz(Ffp) + B”ATHLz(Ffp)
+ Iy + I5.

For the mixed terms on the right hand side, let M" = (M}, M*) and A" =
(A7, A™). Since Ty, is assumed to be C', it holds that A™ € (HY?(T's,))%. We

have
% ny4in/Tfp 2y T TFfP_ny ’ Ly
1 n n
(5.31) < oy M2 ) A" 2y

1
dey

€

& IM e, +

IN

A e, -

where we have used the duality of ||| -1/2(r,,) and ||| g1/2(r,,). as well as Young’s

inequality. Using the continuous version of the inf-sup condition @I4)) and (GI3),
we obtain

n VAS =
(5.32) ||Pf+1||L2(szf) < IB—fHUer1Hf7

where C is the continuity constant, ay(uy, vy) < Crllug|| g l|vella @) Next,

similarly to (@I9), from (EI3) we have

1 n
IM™ [ gr-12r,,) < V/Cr(L+ACEIUT 4

(5.33) Ceat
+ ||PF+1||L2(Qf) + Cop[|S"F (1) — YT ) -2 y,)s

where Cy, is the trace inequality constant, |[v|lgi/20,,) < CerllVella1 (). Com-

bining (532)) and (533]) implies that
(5.34) IV, o,y < Cr (U3 4+ 1B ragr) )

where B" := §""(p) —9T"(n,,). Taking e = 2 in (E.3I) and using (B.34) results
s

in
Cy

2 2
H=1/2(T,) + 12 ||An||H1/2(Ffp)'

1 1 1
) - Mn An < Z n+12 - Bn
(5:35) 5 (M"A")r, < IUGH3 + 7B
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It remains to bound I and I3. To this end, we first note that the continuous
version of the inf-sup condition (£I5) and (5.I8) with &, = 0 imply

(5.36) 1Py 2,y < CollUR G

Now, Using the Cauchy-Schwarz and Young’s inequalities, we have

~ n 1 n
L] < s5C,||IT H(Pp)”%?(np) + EHPp +1H%2(Qp)
P
~ mn 1 T
+a2C[|V - T +1(np)||%2((2p) + E”Pp +1||%2(Qp)
)
_ _ 1
637 < BCIT @) Bagey) + 0?1V - T, e, + UL

2
Y n € n
Il < I ) By o,y + 5107 B agr,

eCtr

2
Y n n
< ST ) vaqey,y + G, 1033

y2C?
cf"HT”“(np)llH 2y, Ty IIU?HII?,

(5.38) <
where we used the trace inequality and the coercivity bound for ay in (@9) and
chose € = ¢y /(2C3)).

Applying bounds (£.35) and (5.37)—(.38) in (5.30), using that a(a—b) > 1(a?
b?) (cf. ([@2) for the first four terms on the left-hand side, as well as the coercivity
bounds [@9) yields

(5.39)
1 n41)12 ny2 50 n+1 n (12
et U R AT e o (Ll A 1
1 1 1
n+1/2 +12 +12 2
+ SIOFE + IO+ o (I |L2<p,,p)—||M"||Lz<rf,,>) <
where
= LU+ B NA ey + 1A e,
,.YQ

n mn OT mn
+ 530, T (pp)Hm(Q y ta 2G|V T +1(np)||L2(Qp) + ft T H("?;;)H%Z(pr)-

We multiply (539) by At and sum from n = 0 to m — 1, for 1 < m < N, which

yields
1 m So m At —
SIH 2+ FIE e, + 5 D 10513
n=0
Ar =l At
n+112 m||2
(5.40) + 5 z:: 105 Ml + o IM™ 2y,
m—1
<ACY I IEYE + PP, + o MY e,
n=0
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All initial error terms above are zero. In particular, H 2 =0 and PS = 0 from the
choice of initial numerical values, and dmp(to) — dmg = Uu,,0— U, = 0 implies that
MP? = 0. For the term J", which collects all time splitting and time discretization
errors, assuming that the solution is sufficiently smooth, it is straightforward to
show that J™ = O(At?), hence Aty " ' J" = O(TA#?). Therefore, using that

(E40) holds for all 1 < m < N and comblnlng it with (£32)), (534), and (E36), we
obtain (.12)).

6. ITERATIVE ALGORITHM

The algorithm discussed in the previous sections solves one Stokes and one Biot
problem per time step. This is a computationally efficient choice, but it introduces
a splitting error. To avoid this error, one could use the iterative version of the
algorithm, which at every time t"*! iterates over the Stokes and Biot sub-problems
until convergence. This is a fixed point iteration. Let k be the iteration index.
For ease of notation, in the description of the algorithm we will drop the time step
index from the variables in the iterations, i.e., we will write ¢**! instead of the
more rigorous (and bulkier) ¢t F L Finally, let dyp**tt := (o*+1 — ") /At and
Ayttt = dydimi™ = (dimi ™ —dym )/ At. Recalling that dynl = (n —ni—1)/At
for n > 1, we have dyny™ = (nk+! — 202 + n2~1)/At?, while for n = 0 we have

dunitt = (it —ny) /At —u, o)/ At.
For simplicity we present the method in the case ygs5 = 0. At every time "1,
assume that u’, pp, ny, py;, and p are known.

n

Algorithm 2. Set ;8 = u? and p = po.

I The following steps are performed at
iteration k+ 1, kK > 0:

1) Stokes problem: Find k“,kar1 such that
f

(pfdtul;Jrl vf) _|_ af(ul;Jrl, vf) + bf(vj,’pﬁﬁ’l)
+ ¢ (uf = ng,vyeng)r,, + (0T T v T,
(6.1) = (£7,v5)a, + (s, vy -ng)r,, + (W5, v -5,
(6.2) —bp(af™ wy) = (g7, wp)a;

(2) Biot problem: Find (nkt!, uktt ph+1) such that

(ppdtm’;H,&p)Qp + ot;f(uk+1 vp) +ag(n kH,E )+ ab (ép,pkﬂ)
+ bp(vpvpngrl) + 'Yp<( ubtl 44 n’““) n,, (v, + gp) : np>1“fp
+ 7p<dm’;“ “Tp, & Tp)Ty,
= (£,€,)a, + (i — (p )0y 0y, (v +€,) mp)p
(6.3) +(ur = (T 6 T
(6.4) (dtkarl p)Qp - O‘bp(dtrlngrlva) - bp(u’;+1va) = (Qvap)Qp-
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(3) Update:
(6.5a)

(b b, = (= Gy ) (e ™ 0™ my b omg) Xy
(6.5b)

(Wt xe)ry, = (k= (v + ) (demy ™y 0 ) )

(4) Check the stopping criterion, e.g.

(6.6) H kl.np—uf-n ‘ <,
! ! ! LQ(FfP)
where € s a given stopping tolerance. If not satisfied, repeat steps (1)—(4).
If satisfied, set u?“ _ uI;H, p?—s—l k+1, 772“ n’;“, urt! — ul;ﬂ’
p;l+1 — p/;-l-l’ and “n-l-l /J’k+1

We next show that Algorithm [2] converges.

Theorem 6.1. For Algorithm [ with vy = v, = 7 it holds that the sequence
(u’;,p’;,nlg,u’;,p’;,uk) converges in Vi x Wr x X, x V,, x Wy, x (L*(Tsp))?.

Proof. Let _I;H = u’}“ - u’]‘é for £k > 1 with a similar notation for the rest of the
variables. Subtracting ([EI)-(G35) for k£ + 1 and & results in the equations in the
Stokes region

1 ( —k+1 —k+1 k41
— (psu’ ,v) +ar(@7T,ve) +be(ve, DY)
At fUy f Q AN f fVE Py

+y(@ T ng, v g, @ T v T,
(6‘7) = <ﬁl72,Vf ’ nf>Ffp + <ﬁ£>vf : Tf>Ffp
(6.8) —bp(ay™, wy) =0,

and in the Biot region
1 _ —
Atg (P;DTII; 175 ) (u];+lvv ) (77];+17€ )
+b (Vp7pl;+1) +aby (€, 7yt

1_
+’y<( Tt Atnl;Jrl) 1y, (v,, + 5p) . np>r

fp
1
G b)),
(69) = <ﬁ']rc7, - 2’yﬁf : nf? (VP + €p) ! np>rfp + <ﬁ - 27uk+1 Tfﬂ £p ' TP>Ffp,
1 _ 1 —
(6.10) E(sop’;H,wP)QP (Atn];"’l ) — by(uit! w,) =0,

as well as the updates

_ — 1 -
(6.118) (a5 xa)r, = (7 =2 (7 + ) my + T ony ) oxa)
fp

- B 1
(611b) (75, X, = (7 — 27(&77’;*1 T+ Tf)’XT>r
fp
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. —k _k — _ _

Taking vy = uf+1, wy = pf+1, vp = ukJr1 wy = p];"’l, and §, = Altngﬂ and
following the argument in the proof of Theorem 4T, we obtain for any integers
1< M < Mg,

My—1

Pf (=k+1 —k+1 Pp i—k+1 —k+1 1 k+1 —k+1
Z (E(U‘f U oy +At2(np ), At ap (M, 7, )
k=M,
R ) + o) (e )

1 _ 1 _
+— [ @)+ —/ (mpetty?
4y Tfp 4y Tfp

(6.12)

1
<— [ (m" +—/ )2,
T ), B [y

which implies that the series Z (pf ﬁ];fl ﬁ];"’l)gf + az(uy aktl ’;‘H)) is conver-

gent. Therefore Wi — 0 in Vf. Using the inf-sup condition ([@I4]), we conclude
from (67) that
(6.13) ||5?+1||L2(rfp) < OHﬁ?HHHl(Qf),

therefore p’;@ — 0in Wy. In addition, since Ay, = Vfﬁ‘r‘fp, we can take vy = Efyhﬁk
in (@7), where Ey j is the discrete Stokes extension utilized in (219)), obtaining

(6.14) 17" | 2 (ry,) < CRTV2AG gy + 107 2 0p)s

where we used the inverse inequality ||ﬁk\|H1/2(pfp) < Ch_1/2||ﬁk||Lz(Ffp). From

(©I3) and (GI4) we conclude that 7% — 0 in (L3(T's,))?. Now, taking M; — oo in
(612) and using ([@I) and the triangle inequality, we obtain that, as My, My — oo,

M M M M
||uf ? - u; 1||H1(szf) + ||77p 2, 1||H1(Qp)
[y = w2, + 17, = pp"llr2e,) = 0,
hence (u’;, nk,ul, pk) is a Cauchy sequence in Vi x X, x (L?(£2,))* x W,,. Bounds
(6.13) and ([6.14) now imply that (p§, u*) is a Cauchy sequence in Wy x (L*(T',))?.
Finally, taking w, = V- u; " in (610) implies
C
—k —k —k
IV - 2(0,) < Kt(HPPHHB(Qp) + 17" M e,))s

while the discrete trace-inverse inequality gives

[yt npL2r,,) < ChTY2 (L2 (q,)-
Therefore u’; is a Cauchy sequence in V,. The assertion of the theorem follows
from the completeness of the spaces. O

Remark 6.1. The proof of Theorem [6.T]establishes convergence of the iterative algo-
rithm, but does not provide convergence rate. We refer the reader to [4l[5,21], where
such rates are established for related Robin-Robin schemes applied to simplified FSI
or FPSI models using fixed point iteration arguments. In the numerical section we
present a test on the effect of the Robin parameter on the rate of convergence.
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6.1. Monolithic scheme. Let us denote the limit functions in Theorem as
(ﬁ’;,ﬁ’;,ﬁﬁ,ﬁ’;,ﬁ’;,ﬂk) Taking k¥ — oo in ([@I)-(@H) and using the convergence
established in Theorem[B.1], we conclude that the limit functions satisfy the following
fully coupled fully implicit scheme: find

(@) € Vi x Wi, (apt ap ™ pnt) € Xpn X Vi X Wi,

and @'t € Ay, such that for all (vy,wp) € Vi x Wi, (&py Vprwp) € Xpp X

vah X Wp7h, and X € Ay,
(pfdtﬁ?—i_l,Vf)Q —|—af(ﬁ?+1,vf) + bf(Vf prH_l)
f

+y@pt g, vieng)e,, @ T v T,

(6.15) = (ffvvf)ﬂf + (ot vy g, + (B2 Ve T,
(6.16) — by (W wy) = (g7, wyp)ey,
(ppdeip ', € )Q al(mtt g, +ad(artt,vy)

+aby(€,, By ) + by(vy, By )

+ 'Y<( nt4d 77”+1) n,, (v, + €p) : np>1“fp

+7<dt77n+1 T &y 'Tp>Ffp

(fp7£ )Q + (i it 2’Yﬁ}l+1 ‘g, (vp + £p) : np>Ffp

<#?+1 _ Q’Yuf +1 T, €y Tp>rf

SO(dtﬁZ )Q - abp(dtﬁg+lv p) — b ( i ,Wp) = (QP’w;D)Qp7
<(dt~"Jr1 + u”“) n, + ﬁ?“ 1y, Xn)r,, =0,
(dy 77"+1 Ty + u}”‘l T, Xr)T,, = 0.
We note that the Robin data variables i"*! and i”*! play the role of Lagrange

multipliers to impose weakly the velocity continuity conditions (28] and (ZI0)
in (EI9)-@20). In addition, since the Stokes solution satisfies weakly the Robin

boundary conditions

vt ong + (6 ny) cny =ttt and oyt orp 4 (67 ny) -y = At

and the Biot solution satisfies weakly the Robin boundary conditions

V(@ iyt ony (6 )y = T - 2yEp T ny
vdeny Ty (6T y) Ty, = u?“ 2yatt Ty,
vyt + demp ) omy, — ﬁZ = it —2y0ftt ny,

it follows that conditions

n+1

o’ nf+0'”+1np:O and  — (6" 'ny)- prtl

O'f ng)-ny = pp
are satisfied weakly, i.e., the balance of stress conditions (Z9]) hold weakly for the
solution of the method.

To the best of our knowledge, the fully implicit scheme (GI5)—-(@20) has not
been studied in the literature. The argument above proves existence of a solution.
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We next establish uniqueness and stability. To this end, we define a modified energy
term

on _ Pfian Pp i g =n Loon 50 |1 ~n
& = —flluf||2L2(Qf> + flldmplliz(gp) + gllnplli + 3||pp||i2(gp),

which is the energy term ™ from (6] without the terms involving i’ and 2.
Again for simplicity we let f; =, = ¢y = g, = 0.

Theorem 6.2. The method ([GI5)—(C20) has a unique solution satisfying the en-
ergy equality

N N
(6.21) EN ALY D4y ST <&

1 1 _ ~n+1
~n+ n+,€—dtn

Proof. We take vy = ﬁf+ , Wy = p}l‘H, p = Uy, wp = pp
Xn = @il and x, = a2 in (GI5)- (KDIID and sum the equations. In a way

similar to ([I1]) and ([@I3]), we obtain

(pfdt fa u;erl)Q +af( n+1 ?Jrl) (ppdttlflp s dym)

_,’_a ( n+1 dtnn+1)+a ( n+1 "+1)+So(dtp"+1,p2+l)9p < 0.

)

n+1)

We remark that all terms involving g1 and i”*! cancel out. Then (G.21)) follows
by using ([£2), multiplying by At, and summing over n.
The energy balance ([6.2I)) implies uniqueness for 4’} i3 1, Uy, and pj. Umqueness

for p' and " follows from the argument used to establish that " F—0andp k=0
in the proof of Theorem O

Remark 6.2. As noted above, the monolithic scheme (GIH)—([E20) is new. The
scheme warrants further studies. Since the Lagrange multiplier is based on Robin
transmission conditions, the method may be more robust in the regime of large
added-mass-effect when the system is preconditioned with sub-domain solves com-
pared to monolithic schemes based on Dirichlet or Neumann transmission condi-
tions. This is a possible topic of future research.

7. NUMERICAL RESULTS

This section presents results from two numerical tests in two dimensions. We
start with checking the convergence rates in time for the Robin-Robin algorithm
BI0)-BID), its iterative version (GI)—(60]), and the monolithic scheme ([GI5)—
(6.20). The convergence test is also used to assess the robustness of the Robin-Robin
algorithm in both the non-iterative and iterative versions to changes in the value
of the Robin parameter. Next, we consider a simplified blood flow problem to
illustrate the behavior of the methods for a computationally challenging choice of
physical parameters.

All results have been obtained with FreeFem++ [32], using triangular grids. For
spatial discretization we use the following finite element spaces: the Taylor-Hood
continuous Py — Py elements for the velocity—pressure pair in the Stokes problem,
the Raviart-Thomas R7 1 — P elements for the Darcy velocity and pressure, and
continuous Pq elements for the structure displacement and the trace function .
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7.1. Example 1: Convergence test. In order to check the convergence rates
in time, we consider an analytical solution in domains Qy = (0,1) x (0,1) and
Q, = (0,1) x (—1,0) with interface ', = (0,1) x {0} over time interval (0,1]. We
take T = (0,1) x {1}, T = {0} x (0,1) U{1} x (0,1), TY =T2 = (0,1) x {-1},
and T = I')V = {0} x (—=1,0) U {1} x (=1,0). See the computational domain
in Figure 2(left) and the analytical solution in Figure Pl(right). We note that the
analytical solution satisfies the appropriate interface conditions on I'f,.

y+1
ps = exp(t) sin(mz) cos (%y)

uy = mcos(mt) (—3x o cos( y)> ,

+27 cos(mt),
. Ty
pp = exp(t) sin(mx) cos (7),
1
u, = ——KVp,,

-3z + cos(y))

1, = sin(wt
i ()< y+1

FIGURE 2. Example 1, left: computational domain and mesh;
right: analytical solution

The model parameters are set as follows: ur =1, pf =1, pp = 1, pp, = 1,
Ap=1850=1 K =1Iox2, a =1, ygjs = 0, 7y = 7p = 7 = 1. The forcing
terms fy, g, f, and ¢, are found by plugging the analytical solution in (Z3)-(2.1).
Similarly, appropriate data for the Dirichlet and Neumann boundary conditions
and initial conditions are derived from the exact solution.

The structured mesh used in the convergence study, obtained by setting the mesh
size h to 1/32, is shown in Figure[J(left). The choice of the mesh size is so that the
spatial discretization error does not affect the convergence rates in time.

For the time convergence study, we consider the time interval [0, 1] and a sequence
of progressively smaller time steps: At = 0.2,0.1,0.05,0.025,0.0125. Table [ re-
ports numerical errors for the Stokes, Biot, and auxiliary interface variables in the
space-time norms bounded in the analysis, as well as the corresponding convergence
rates in time for the non-iterative Robin-Robin algorithm. We note that the error
for the interface variable p is reported in the Lz(I’fp) norm, which is stronger,
but easier to compute than the H—/ 2(I'4p) norm that appears in the analysis.
As the time step gets smaller, we observe that the rate of convergence approaches
one (i.e., the expected rate) for all variables. Furthermore, Tables [2] and Bl report
the errors and rates for the iterative Robin-Robin algorithm and the monolithic
scheme, respectively. We also present the results from the iterative Robin-Robin
algorithm with a fixed number of 10 iterations at each time step in Table @l First
order convergence in time is observed for all variables for all methods. To ease the
comparison for selected variables, namely uy, u,, n,, Figure ] (first row) shows
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TABLE 1. Example 1, numerical errors and convergence rates in

time for the non-iterative Robin-Robin algorithm

At

”euf”L“’(Hl(Qf))

lep, lz2(z20))

llew, | 22 (1 (div:2,))

lep, o= (r2(2,))

0.2
0.1
0.05
0.025
0.0125

1.663e+-00
9.071e-01
4.768e-01
2.449e-01
1.247e-01

Rate
0.87
0.92
0.96
0.97

1.706e+00
8.999e-01
4.640e-01
2.360e-01
1.191e-01

Rate
0.92
0.95
0.97
0.98

1.800e+00
1.046e+00
5.825e-01
3.113e-01
1.617e-01

Rate
0.78
0.84
0.90
0.94

3.112e-01
1.827e-01
1.023e-01
5.497e-02
2.855e-02

Rate
0.72
0.83
0.89
0.94

At

||enp ||L°°(H1(Qp))

Heatnp ||L°°(L2<Qp))

||eu|\Loo(L2(rfp>>

0.2
0.1
0.05
0.025
0.0125

1.966e+00
1.183e+00
6.675e-01
3.589e-01
1.868e-01

Rate
0.73
0.82
0.89
0.94

1.578e+4-00
8.996e-01
4.808e-01
2.491e-01
1.270e-01

Rate
0.81
0.90
0.94
0.97

2.369e+-00
1.311e+00
6.857e-01
3.479e-01
1.745e-01

Rate
0.85
0.93
0.97
0.99

TABLE 2. Example 1, numerical errors and convergence rates in
time for the iterative Robin-Robin algorithm. The last column
reports the average number of iterations required to satisfy the
stopping criterion (6.0]).

At

||6uf ||L°°(H1(Qf))

||6pf ||L2(L2(Qf))

Heup ||L2(H(dw;ﬂp))

||6pp ||Lo<>(L2(Q,,))

0.2
0.1
0.05
0.025
0.0125

1.233e+00
6.481e-01
3.331e-01
1.686e-01
8.473e-02

Rate
0.92
0.96
0.98
0.99

1.537e+-00
7.809e-01
3.936e-01
1.977e-01
9.911e-02

Rate
0.97
0.98
0.99
0.99

1.730e+-00

1.005e+-00
5.602e-01
2.998e-01
1.559e-01

Rate
0.78
0.84
0.90
0.94

2.855e-01
1.700e-01
9.646e-02
5.169e-02
2.686e-02

Rate
0.74
0.81
0.90
0.94

At

||€n,, ||L°°(H1(Qp))

llean, |l Lo (L2 (2,))

7 iter

leullroez2cr,,))

0.2
0.1
0.05
0.025
0.0125

1.520e4-00
8.827e-01
4.938e-01
2.659e-01
1.388e-01

Rate
0.78
0.83
0.89
0.93

1.553e4-00
8.933e-01
4.803e-01
2.497e-01
1.276e-01

Rate
0.79
0.89
0.94
0.96

1.853e4-00
9.848e-01
5.123e-01
2.625e-01
1.337e-01

Rate
0.91
0.94
0.96
0.97

96.60
89.20
76.50
65.45
55.10

the convergence plots. We see that, as one would expect, the errors in the itera-
tive Robin-Robin algorithm are indistinguishable from the errors in the monolithic
scheme (identical for the number of digits reported in the tables), while the errors
in the non-iterative Robin-Robin method are slightly larger. We recall that, in
the case of the iterative algorithm, the increased accuracy comes with an increased
computational cost, since every time step requires the solution of multiple Stokes
and Biot problems; see the last column in Table [2] for the average number of iter-
ations required to satisfy the stopping criterion (G.0]), with the maximum number
of iterations set to 100. However, we also observe from Table [l and Figure [ (first
row) that even not running the iterative scheme to convergence, but only taking
a small number of iterations (10), also gives results very close to the monolithic
scheme.
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TABLE 3. Example 1, numerical errors and convergence rates in
time for the monolithic scheme

At | llew le=crr@p) | llep 2z | llew, 2 ie,) | llep, =2,
0.2 1.233e+00 | Rate | 1.537e4+00 | Rate | 1.730e4+00 | Rate | 2.855e-01 | Rate
0.1 6.481e-01 | 0.92 7.809e-01 | 0.97 | 1.005e400 | 0.78 | 1.700e-01 | 0.74
0.05 3.331e-01 | 0.96 3.936e-01 | 0.98 5.602e-01 | 0.84 | 9.646e-02 | 0.81
0.025 | 1.686e-01 |0.98 1.977e-01 |0.99 2.998e-01 | 0.90 | 5.169e-02 | 0.90
0.0125 | 8.473e-02 |0.99 9.911e-02 |0.99 1.559e-01 | 0.94 2.686e-02 | 0.94
At llen, lo 1,y | lleaim, o2,y | llenlloe @z,
0.2 1.520e+00 | Rate | 1.553e4+00 | Rate | 1.865e4-00 | Rate
0.1 8.827e-01 |0.78 8.933e-01 |0.79 9.887e-01 | 0.91
0.05 4.938e-01 |0.83 4.803e-01 | 0.89 5.130e-01 | 0.94
0.025 | 2.659e-01 |0.89 2.497e-01 | 0.94 2.626e-01 | 0.96
0.0125| 1.388e-01 |0.93 1.276e-01 | 0.96 1.337e-01 | 0.97
TABLE 4. Example 1, numerical errors and convergence rates in
time for the iterative Robin-Robin algorithm with 10 iterations per
time step
At | Nlewg o=@ | llepllez@z@p) | lew, 2 @@ive,) | e, loe 2@,
0.2 1.240e+00 | Rate | 1.537e400 | Rate| 1.731e+00 | Rate | 2.862e-01 | Rate
0.1 6.491e-01 | 0.93 7.807e-01 | 0.97 | 1.006e+400 | 0.78 | 1.704e-01 | 0.74
0.05 3.325e-01 | 0.96 3.934e-01 | 0.98 5.603e-01 | 0.84 | 9.659e-02 | 0.81
0.025 | 1.676e-01 |0.98 1.974e-01 | 0.99 2.995e-01 | 0.90 | 5.162e-02 | 0.90
0.0125 | 8.365e-02 |1.00 9.866e-02 | 1.00 1.554e-01 | 0.94 | 2.662e-02 | 0.94
At llen, llnoe (0, | l€oem, Lo 20y | llenlloeo 2y, | # iter
0.2 1.512e+00 | Rate | 1.553e4+00 | Rate | 1.828e+00 | Rate | 10.00
0.1 8.877e-01 |0.78 8.933e-01 | 0.79 | 9.658e-01 |0.92 | 10.00
0.05 4.903e-01 | 0.83 4.803e-01 | 0.89 5.020e-01 | 0.94 | 10.00
0.025 2.637e-01 | 0.89 2.497e-01 | 0.94 2.583e-01 |0.95 | 10.00
0.0125| 1.373e-01 |0.94 1.276e-01 | 0.96 1.324e-01 | 0.96 | 10.00

7.1.1. Robustness to the Robin parameter . In this subsection, we study the ro-
bustness of the Robin-Robin schemes to the value of 7, which is obviously a
key parameter. All the parameters are set as previously, with the exception of
Y = Yf = 7Yp, which will take different values. In practice, it is reasonable to set
~ so that the magnitudes of the velocity and stress terms in the Robin combina-
tion are comparable. While these can be inferred from the physical data and/or
preliminary simulation results, some degree of robustness to =y is desirable.

First, we consider the non-iterative Robin-Robin scheme and the effect of v on
the numerical errors. Figure [ shows the convergence plots for uy, u,, n, for
~ = 0.001,0.01,0.1,1,10,100. For all variables, we observe first order convergence
for v = 0.01,0.1, 1, 10, with the rates approaching first order as At — 0 for v = 100.
However, the convergence rate deteriorates for v = 0.001. The different variables
exhibit somewhat different sensitivity to 7, with u; being slightly more sensitive
than u, and n,. The general trend is that the errors are similar for v € [0.01, 10]
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FIGURE 3. Example 1, convergence plots for fluid velocity uy
(left), Darcy velocity u,, (center), and displacement 7, (right) for
~v =1 (first row), v = 0.001 (second row), and v = 100 (third row)
computed by the non-iterative and iterative Robin-Robin methods
and the monolithic method

and the errors increase if v is too small or too large. We note that for the range v €
[0.01, 10] the magnitudes of the velocity and stress terms in the Robin combination
are comparable. The increase in errors for extreme values of v can be explained
from the theoretical estimate, which has terms proportional to both 72, cf. (5.38)
and 1/92, cf. (535). We conjecture that the reason for the reduced convergence
rate with v = 0.001 is that velocity continuity is not properly enforced by the
Robin transmission conditions. We finally note that both the converged iterative
scheme and the iterative scheme with 10 iterations give smaller errors and recover
first order convergence in time for the extreme values v = 0.001, 100, see the second
and third rows in Figure[3l Moreover, in Figure [l we present the convergence plots
for uys, up, n, with v = 0.001,0.01,0.1,1, 10,100 for the iterative method with 10
iterations and note that the sensitivity to ~ is significantly reduced compared to
the non-iterative method.

Next, we consider the iterative scheme and the effect of v on the number of iter-
ations. We take the same values of v used above, i.e., v = 0.001,0.01,0.1, 1, 10, 100.
Table [B] lists the average number of iterations needed for convergence for each
value. We observe that, for a given value of 7, the average number of iterations
required to satisfy the stopping criterion (G.6]) per time step decreases as the time
step size is reduced. On the other hand, for a given time step the average number
of iterations varies considerably with ~, with v = 0.1 being the “optimal” value.
This value is in the range [0.01,10] of values for v that resulted in smaller time
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FIGURE 4. Example 1, convergence plots for fluid velocity uy
(left), Darcy velocity u,, (right) and displacement n,, (bottom) for
the non-iterative Robin-Robin algorithm for different values of v
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FIGURE 5. Example 1, convergence plots for fluid velocity uy
(left), Darcy velocity u,, (right) and displacement n,, (bottom) for
the iterative Robin-Robin algorithm with 10 iterations per time
step for different values of ~

discretization errors for the non-iterative scheme. We conclude that values of v in
the “optimal” range, where the magnitudes of the velocity and stress terms in the
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TABLE 5. Example 1, average number of iterations required to
satisfy the stopping criterion (6.6 per time step of the iterative
Robin-Robin scheme for different values of

At |vy=0.001 y=0.01 y=01 v=1 v=10 =100
0.2 100.00 94.40 26.80 96.60 49.00 99.80
0.1 100.00 86.70 20.20 89.20 43.70  93.90
0.05 100.00 54.20 17.06 76.50 39.20 67.65
0.025 76.20 23.675  12.60 65.45 34.97 46.525
0.0125| 31.45 13.3375  8.72  55.10 30.96 32.325

Robin combination are comparable, result in both smaller errors in the non-iterative
scheme and faster convergence in the iterative scheme.

7.2. Example 2: Blood flow test. In this example, we test the behavior of
the method for a computationally challenging choice of physical parameters. We
consider a benchmark on modeling blood flow through a section of an idealized
artery. The Stokes equations model the blood flow in the lumen of the artery and
the Biot equations model the arterial wall. Let R and L be the radius and length
of the artery, respectively. The fluid domain is Q; = (0, L) x (=R, R). Its top and
bottom boundaries are in contact with the poroelastic arterial wall of thickness r,,.
See the computational domain in Figure [6(left).

mn ext out

FP FP FP
»
out

r I9

iy ]_'\ezt ¢ t

n ou
ry p ry

FIGUrRE 6. Example 2, left: computational domain and mesh;
right: zoomed-in view of the mesh at the fluid-structure interface

Since this is a 2D problem representing a slice of a 3D problem, we add an extra
term to (23] to account for the fact that the 2D structure is actually part of a 3D
cylindrical tube:

ppattnp—v'ap+ﬂnp:fp in QPX(O,T],

where p,, is the fluid density in the poroelastic region. The additional term (i.e., the
last term at the left-hand side) comes from the axially symmetric two dimensional
formulation, accounting for the recoil due to the circumferential strain [4]. The
body force terms fy and f, and external source g, are set to zero.

Let T%" = {(0,y)] = R <y < R} and T'$"* = {(L,y)| — R <y < R} be the inlet
and outlet boundaries of the fluid domain, respectively. Following [35[39,46], we
prescribe the normal stress at both inlet and outlet:

(7.1)
o0 = —pi(t)ng, on TP x(0,T]; oyn$* =0, on T§ x(0,T],
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where ny' and n?-“t are the respective outward unit normals and

Prax 27t .
2a <1 — COS (Tmax)) , if ¢ < Tax;

0, if > Thax,

(72) Din (t) =

with Ppax = 13,334 dyn/cm2 and Tax = 0.003 s. Flow distribution and pressure
field are often unknown, they are common in blood flow models. In a system in rest
state, this inlet boundary condition generates a pressure pulse that travels through
the fluid and poroelastic structure domains. We set the end of the time interval of
interest to T' = 0.021 s to avoid the pressure pulse reaching the outlet boundary.

With similar notation, we denote with T* = {(0,y)|-R—r, <y <R or R<
y<R+r,}and 9" = {(L,y)| —R—r, <y <R or R<y<R+ry} the inlet
and outlet boundaries of the poroelastic structure, respectively. We assume that
the poroelastic structure is fixed at the inlet and outlet boundaries:

(7.3) n,=0, on T"UTY" x(0,T],
and for the Darcy velocity we impose the following drained boundary condition:
(7.4) u, =0, on I"UT x (0,7

Let T¢"" = {(z,9)|0 < < L,y = —R—r, or y = R+ 17y} be the external
structure boundary. Following [46], therein we impose:

(geny) -ny, =0, on F;‘”t x (0,71,
M, Tp =0, on I’Z’”t x (0,77,
(7.5) pp =0, on  I§¥ x (0,T].

To save computational time, we halve the domain in Figure [f(left) along the
horizontal symmetry axis, denoted with I';'™, and impose the following symmetry

conditions therein:
us-ny =0, on I’;ymx(O,T],
7.6 omys) -1r=0, on TI¥™ % (0,T).
Ff f f

The geometric and physical parameters for this test are summarized in Table [6l
The physical parameters are chosen within the range of physical values for arterial
blood flow.

Remark 7.1. The physical parameters in Table [0 present several computational
challenges. The closeness of the fluid density p; and poroelastic wall density p,
may lead to the so-called added-mass-effect, which causes stability and conver-
gence issues for classical Neumann-Dirichlet methods [5L21]. The small values of
permeability K and storativity so may lead to poroelastic locking. The high stiff-
ness of the arterial wall due to large Lamé parameters )\, and p, results in large
stress along the interface and affects the choice of the Robin parameter ~.

The computational mesh is shown in Figure [Bl(left), with a zoomed-in view
around the fluid-structure interface in Figure [Blright). The time step is set to
At = 10~* 5. Regarding the choice of the Robin parameter v, the O(10°) values
of A, and B indicate that the stress is several orders of magnitude larger than the
velocity, suggesting a large value of 7. With estimated magnitudes O(1) for the
interface velocity and O(103) for the interface stress, obtained from a preliminary
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TABLE 6. Example 2, geometric and physical parameters

Parameter Symbol  Units Reference value
Radius R cm 0.5
Length L cm 6
Poroelastic wall thickness Tp cm 0.1
Poroelastic wall density Pp g/ cm® 1.1
Fluid density Pf g/cm® 1.0
Dyn. viscosity i, g/cm-s 0.035
Spring coeff. I6] dyn/ cm? 4 % 108
Mass storativity 50 cm?/dyn 1073
Permeability K em?  diag(1,1) x 1076
Lamé coef. p dyn/cm2 5.575 x 105
Lamé coeff. A,  dyn/cm® 1.7 x 108
BJS coeff. apjs 1
Biot-Willis constant « 1

computation, we set vy = vy, = v = 1000 in order to balance the two terms in the
Robin combination. We later test the robustness of the non-iterative method for
different values of ~.

Figure [flshows the fluid pressure p; and Darcy pressure p,, in their corresponding
domains computed by the Robin-Robin scheme in the non-iterative version and the
monolithic scheme at three different times. We clearly see the propagation of the
pressure wave and an excellent qualitative match in the pressures computed by the
two methods. Figure [§] shows the velocity fields uy and u, computed by the same
two schemes at the same times used in Figure [l Again, we see a great qualitative
match in the solutions computed by the two methods. The faint lines that can been
seen along the horizontal symmetry line in the plots in Figures [7] and 8 are due to
the fact that we have solved the problem on half of the domain and mirrored the
results in Paraview to show the entire vessel.

To further compare the solutions given by the different methods, Figure [ dis-
plays the fluid pressure, vertical fluid velocity, vertical Darcy velocity, and vertical
structure displacement along the interface computed at different times by the non-
iterative and iterative Robin-Robin methods, and the monolithic method. We see
that the curves given by the iterative Robin-Robin method and the monolithic
method overlap. There is a slight difference with the curves given by the non-
iterative Robin-Robin method, which becomes less noticeable as time passes. It
seems that initially the lack of iterations in the Robin-Robin method slows down
the wave. Overall, we conclude that the non-iterative Robin-Robin method provides
accuracy comparable to the other two methods.

Finally, we test the robustness of the non-iterative Robin-Robin method to the
Robin parameter . Figure [I0 shows the solution along the interface for v =
10,100, 500, 1000, 2000. The curves for v = 100,500,1000 are very similar and
the curves for v = 2000 deviate from them slightly. The curves for v = 10 are
significantly different. As in the previous example, we conclude that there is a range
of values of ~y, for which the two terms in the Robin combination are of comparable
magnitudes, that produce accurate results. Values outside of this range may result
in reduction in accuracy, especially values of v that are too small.
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FicUrRe 7. Example 2, fluid and Darcy pressure computed by the
non-iterative Robin-Robin scheme (top) and the monolithic scheme
(bottom) at times ¢ = 0.007,0.014,0.021 s (from top to bottom)

8. CONCLUSIONS

We developed an iterative and a non-iterative splitting method for the Stokes-
Biot model based on Robin-Robin transmission conditions. The methods utilize an
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FiGure 8. Example 2, fluid and Darcy velocity computed by the
non-iterative Robin-Robin scheme (top) and the monolithic scheme
(bottom) at times ¢t = 0.007,0.014,0.021 s (from top to bottom).
The arrows represent the velocity vectors and the color represents
the velocity magnitudes.

auxiliary interface variable that models the Robin data. It is used to handle properly
the insufficient regularity of the normal stress on the interface. With a suitable
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FIGURE 9. Example 2, fluid pressure (first row), vertical fluid ve-
locity (second row), vertical Darcy velocity (third row), vertical
structure displacement (fourth row) along the interface computed
by the Robin-Robin method in the non-iterative and iterative ver-
sions, and the monolithic method at times ¢t = 0.007,0.014,0.021 s
(from left to right)

choice of negative norm for this variable, we established unconditional stability
and first order convergence in time for the non-iterative scheme. To the best of our
knowledge, this is the first such result in the literature in a general setting for Robin-
Robin methods for both fluid-structure interaction and fluid-poroelastic structure
interaction. We further studied the iterative version of the method and established
convergence to a new monolithic scheme. We presented two sets of numerical
experiments to illustrate the behavior of the methods. In the first example, based
on a given analytical solution, we verified the first order time discretization rates
and the convergence of the iterative scheme. We also studied the robustness to the
Robin parameter . For extreme values of v (too small or too large), for which
the accuracy of the non-iterative method deteriorates, we found that employing
just a small number of iterations helps to recover optimal rates of convergence.
The second example, based on a blood flow modeling benchmark, illustrated the
applicability of the methods for computationally challenging physical parameters
in the regimes of added-mass-effect and poroelastic locking.
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FIGURE 10. Example 2, fluid pressure (first row), vertical fluid
velocity (second row), vertical Darcy velocity (third row), vertical
structure displacement (fourth row) along the interface computed
by the Robin-Robin method in the non-iterative version at times
t = 0.007,0.014,0.021 s (from left to right) for different values of ~y
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