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A ROBIN-ROBIN SPLITTING METHOD FOR THE

STOKES-BIOT FLUID-POROELASTIC STRUCTURE

INTERACTION MODEL
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Abstract. We develop and analyze a splitting method for fluid-poroelastic
structure interaction. The fluid is described using the Stokes equations and the
poroelastic structure is described using the Biot equations. The transmission
conditions on the interface are mass conservation, balance of stresses, and the
Beavers-Joseph-Saffman condition. The splitting method involves single and
decoupled Stokes and Biot solves at each time step. The sub-domain problems
use Robin boundary conditions on the interface, which are obtained from the
transmission conditions. The Robin data is represented by an auxiliary inter-
face variable. We prove that the method is unconditionally stable and establish

that the time discretization error is O(
√
TΔt), where T is the final time and

Δt is the time step. We further study the iterative version of the algorithm,
which involves an iteration between the Stokes and Biot sub-problems at each
time step. We prove that the iteration converges to a monolithic scheme with
a Robin Lagrange multiplier used to impose the continuity of the velocity.
Numerical experiments are presented to illustrate the theoretical results.

1. Introduction

We consider the interaction of an incompressible, viscous, and Newtonian fluid
with a poroelastic medium, referred to as fluid-poroelastic structure interaction
(FPSI). This phenomenon occurs in a wide range of applications, including surface-
groundwater flows, geomechanics, reservoir engineering, filter design, seabed-wave
interaction, and arterial blood flows. The modeling leads to coupled problems that
present significant mathematical and computational challenges.

We model the incompressible flow with the Stokes equations and the poroelastic
medium with the Biot system [8]. In the latter, the equation describing the defor-
mation of the elastic porous matrix is complemented with the Darcy equations that
describe the average velocity and pressure of the fluid in the pores. The Stokes and
Biot problems are coupled at the interface between the fluid and porous regions
through dynamic and kinematic transmission conditions. The Stokes-Biot model
combines two classical well-studied kinds of coupling: the fluid-(elastic)structure
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interaction (FSI) with thick structure and the Stokes–Darcy coupling. While his-
torically the Stokes-Biot and Navier-Stokes-Biot couplings have been less studied,
they have received increasing attention in recent years.

Early works on the coupled Stokes-Biot problem include [38,45]. Well-posedness
of the fully dynamic model was established in [45]. In [5], both monolithic solvers
and partitioned approaches based on domain decomposition methods [40] were ap-
plied to the Navier-Stokes-Biot problem, whose well-posedness with a non-mixed
Darcy formulation is established in [22]. A non-iterative partitioned method based
on operator splitting for the Navier-Stokes-Biot problem with non-mixed Darcy
formulation was introduced in [14] and extended in [13]. The model with a mixed
Darcy formulation was studied in [12]. In this formulation, the continuity of flux
across the interface is a condition of essential type, which is enforced with the
Nitsche’s interior penalty method. A mixed formulation for the Darcy problem in
the Stokes-Biot coupling was also adopted in [3], where the continuity of flux is
imposed via a Lagrange multiplier method. A more complex Stokes-Biot problem
involving a non-Newtonian fluid is considered in [1]. A finite element method for
the four-field Stokes velocity-pressure and Biot displacement-pressure formulation is
presented in [23]. A total pressure formulation for the Stokes-Biot problem is intro-
duced in [41], a stress-displacement mixed elasticity formulation is studied in [36],
a fully mixed formulation is developed in [20], and a HDG method is presented
in [25]. An augmented finite element method for the fully mixed Navier-Stokes-
Biot problem is developed in [35]. Several interesting extensions of the Stokes-Biot
problem have also been proposed, including a dimensionally-reduced model for flow
through fractures [15], coupling with transport [2, 19], multilayered porous media
[9], and porohyperelastic media [44]. An optimization-based decoupling method
is presented in [24]. Second order in time split schemes are developed in [33, 39].
Parameter-robust preconditioners are studied in [11].

In this paper, we study a new Robin-Robin partitioned method for the Stokes-
Biot problem. We employ a velocity-pressure Stokes formulation, a displacement-
based elasticity formulation, and a mixed velocity-pressure Darcy formulation. The
starting point is a rewriting of the coupling conditions for the Stokes-Biot problem,
which state mass conservation, balance of stresses, and slip with friction (Beavers-
Joseph-Saffman condition). These conditions are combined to generate two sets of
Robin boundary conditions on the interface - one for the Stokes problem and the
other for the Biot problem. Such approach was first utilized for FPSI in [5] and
later used in [39, 44] with the motivation to alleviate the difficulty of the so-called
added-mass-effect, which has been observed in FSI for certain parameter regimes
[21]. This effect may cause classical Neumann-Dirichlet split methods to become
unstable or the convergence of their iterative versions to deteriorate [5, 21], see
also [6, 28, 29, 31, 37] for partitioned FSI schemes that address this issue. It has
been shown that Robin-Robin schemes are more robust for wider ranges of physical
parameters [4, 5]. The algorithm developed in this paper differs from the methods
in [5, 39, 44]. It is inspired by a sequential Robin-Robin domain decomposition
method for the Stokes-Darcy coupling introduced in [27]. The key ingredient in
the design of the algorithm is an auxiliary vector variable used to approximate the
interface Robin data, which is modeled in a suitable norm. This avoids the explicit
appearance of the normal stress in the interface terms, which does not have sufficient
regularity for the stability of the sub-domain problems and lead to sub-optimal
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approximation in space and time. In its non-iterative form, our FPSI algorithm
requires the sequential solution of one Stokes problem and one Biot problem per
time step. The appealing features of this algorithm are modularity (one can use
their favorite Stokes and Biot finite element approximations), the option to use
non-matching meshes, and the reduced computational cost that comes from the
lack of sub-iterations. It is not unusual for non-iterative partitioned methods to
have stability issues or suffer from a loss of accuracy. We prove that our non-
iterative method is unconditionally stable and establish an error estimate for the
quasistatic model showing that the time discretization error is O(

√
TΔt), where T

is the final time and Δt is the time step. We remark that in [5] the Robin-Robin
method is only studied computationally, while in [39, 44] only stability analysis
is performed. Thus, to the best of our knowledge, this is the first result in the
literature on both unconditional stability and optimal time discretization error for
a non-iterative Robin-Robin split scheme for FPSI.

We also present the iterative version of the algorithm, i.e., at every time step
one iterates over the Stokes and Biot sub-problems until convergence. We prove
that the solution of the iterative method converges to the solution of a monolithic
scheme. The auxiliary interface variable converges to a Robin Lagrange multiplier
used to impose weakly the velocity continuity condition. To the best of our knowl-
edge, the resulting monolithic scheme has not been studied in the literature. We
prove that a unique and stable solution to the monolithic scheme exists. While
the iterative FPSI algorithm has an increased computational cost, it has the ad-
vantage of not introducing a splitting error while still allowing to recycle existing
fluid and structure solvers. For the monolithic scheme instead, one needs to imple-
ment a coupled solver. We assess the convergence, robustness, and accuracy of the
non-iterative and iterative Robin-Robin methods and the monolithic scheme with
two benchmarks: a test that features an exact solution and a simplified blood flow
problem.

We further remark that the FPSI problem is a generalization of FSI with thick
structure. Therefore, the techniques developed in this paper apply to the cor-
responding Robin-Robin algorithm for FSI, which is also new. In recent years,
alternative unconditionally stable non-iterative Robin-Robin methods for FSI have
been developed in [17, 18, 43], where discretization error of order O(

√
Δt) is estab-

lished. An improved convergence of order O
(
Δt

√
T + log 1

Δt

)
is obtained in [16]

for a related model in a specific geometry. Our work provides a generalization and
an improvement of these results.

The remaining of the paper is structured as follows. Section 2 describes the
coupled Stokes-Biot problems. Section 3 presents the non-iterative Robin-Robin
algorithm, whose stability analysis is carried out in Section 4. The time discretiza-
tion error analysis for the quasistatic model is presented in Section 5. The iterative
version of the algorithm is developed in Section 6. The numerical results are dis-
cussed in Section 7. Finally, conclusions are drawn in Section 8.

2. Problem setting

We consider a multiphysics model problem studied in [3] that describes the inter-
action of a free fluid with a flow in a deformable porous media. The spatial domain
Ω ⊂ Rd, d = 2, 3 is the union of non-overlapping regions Ωf and Ωp, see Figure 1.
Here, Ωf is a free fluid region with flow governed by the Stokes equations and Ωp
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Figure 1. Schematic representation of a 2D computational domain

is a poroelastic material governed by the Biot system. For simplicity of notation,
we assume that each region is connected. The extension to non-connected regions
is straightforward. Let Γfp = ∂Ωf ∩ ∂Ωp be the interface. Let (u�, p�) be the
velocity-pressure pair in Ω�, � = f , p, and let ηp be the displacement in Ωp. Let
μf > 0 be the fluid viscosity, let f� be the body force terms, and let q� be external
source or sink terms. Finally, let D(uf ) and σf (uf , pf ) denote, respectively, the
deformation rate tensor and the Cauchy stress tensor:

(2.1) D(uf ) =
1

2
(∇uf +∇uT

f ), σf (uf , pf ) = −pfI+ 2μfD(uf ).

In the free fluid region Ωf , (uf , pf ) satisfy the Stokes equations

ρf∂tuf −∇ · σf (uf , pf ) = ff in Ωf × (0, T ],(2.2)

∇ · uf = qf in Ωf × (0, T ],(2.3)

where ∂t =
∂
∂t and T > 0 is the end of the time interval of interest. Let σe(ηp) and

σp(ηp, pp) be the elastic and poroelastic stress tensors, respectively:

(2.4) σe(ηp) = λp(∇ · ηp)I+ 2μpD(ηp), σp(ηp, pp) = σe(ηp)− αppI,

where 0 < λmin ≤ λp(x) ≤ λmax and 0 < μmin ≤ μp(x) ≤ μmax are the Lamé
parameters and 0 ≤ α ≤ 1 is the Biot-Willis constant. The poroelasticity region
Ωp is governed by the Biot system [8]

ρp∂ttη −∇ · σp(ηp, pp) = fp in Ωp × (0, T ],(2.5)

μfK
−1up +∇pp = 0 in Ωp × (0, T ],(2.6)

∂t
(
s0pp + α∇ · ηp

)
+∇ · up = qp in Ωp × (0, T ],(2.7)

where ∂tt =
∂2

∂t2 , s0 > 0 is a storage coefficient and K the symmetric and uniformly
positive definite permeability tensor, satisfying, for some constants 0 < kmin ≤
kmax,

∀ ξ ∈ Rd, kminξ
T ξ ≤ ξTK(x)ξ ≤ kmaxξ

T ξ, ∀x ∈ Ωp.

Following [5,45], the interface conditions on the fluid-poroelasticity interface Γfp

are mass conservation, balance of stresses, and the Beavers-Joseph-Saffman (BJS)
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condition [7, 42] modeling slip with friction:

uf · nf +
(
∂tηp + up

)
· np = 0 on Γfp × (0, T ],(2.8)

− (σfnf ) · nf = pp, σfnf + σpnp = 0 on Γfp × (0, T ],(2.9)

− (σfnf ) · τ f,j = μfαBJS

√
K−1

j

(
uf − ∂tηp

)
· τ f,j on Γfp × (0, T ],(2.10)

where nf and np are the outward unit normal vectors to ∂Ωf , and ∂Ωp, respectively,
τ f,j , 1 ≤ j ≤ d− 1, is an orthogonal system of unit tangent vectors on Γfp, Kj =
(Kτ f,j) · τ f,j , and αBJS ≥ 0 is an experimentally determined friction coefficient.
We note that the continuity of flux (2.8) constrains the normal velocity of the solid
skeleton, while the BJS condition (2.10) accounts for its tangential velocity.

The above system of equations needs to be complemented by a set of boundary
and initial conditions. Let Γf = ∂Ωf ∩ ∂Ω and Γp = ∂Ωp ∩ ∂Ω, see Figure 1. Let

Γf = ΓD
f ∪ ΓN

f with |ΓD
f | > 0 and Γp = ΓD

p ∪ ΓN
p = Γ̃D

p ∪ Γ̃N
p . We assume for

simplicity homogeneous boundary conditions: for every t ∈ [0, T ],

uf = 0 on ΓD
f , σfnf = 0 on ΓN

f , ηp = 0 on ΓD
p , σpnp = 0 on ΓN

p ,

pp = 0 on Γ̃D
p , up · np = 0 on Γ̃N

p .

To simplify the characterization of the space for the trace uf |Γfp
, we assume that

ΓD
f is not adjacent to Γfp. In the case when they touch, the boundary condition

uf = 0 on ΓD
f needs to be imposed weakly by introducing a Lagrange multiplier

ϕ = σfnf on ΓD
f . We omit further details for this case. Finally, we set the initial

conditions

uf (x, 0) = uf,0 in Ωf , pp(x, 0) = pp,0(x),

ηp(x, 0) = ηp,0(x), ∂tηp(x, 0) = us,0(x) in Ωp.
(2.11)

Compatible initial data pf,0 for pf (0) and up,0 for up(0) can be obtained by
solving at t = 0 a sequence of single-physics sub-problems satisfying the interface
conditions (2.8)–(2.10), see [1].

The solvability of the fully dynamic Stokes-Biot system with compressible Stokes
fluid was discussed in [45]. The well-posedness analysis of the incompressible qua-
sistatic system has been carried out in [1]. The proof extends easily to the fully
dynamic incompressible system (2.2)–(2.10) considered here.

Let (·, ·)S , S ⊂ Rd, be the L2(S) inner product and let 〈·, ·〉F , F ⊂ Rd−1, be
the L2(F ) inner product or duality pairing. We will use the standard notation for
Sobolev spaces, see, e.g. [26]. Let

Vf = {vf ∈ (H1(Ωf ))
d : vf = 0 on ΓD

f }, Wf = L2(Ωf ),

Vp = {vp ∈ H(div; Ωp) : vp · np|Γfp
∈ L2(Γfp),vp · np = 0 on Γ̃N

p }, Wp = L2(Ωp),

Xp = {ξp ∈ H1(Ωp)
d : ξp = 0 on ΓD

p },
(2.12)

where H(div; Ωp) is the space of (L2(Ωp))
d-vectors with divergence in L2(Ωp) with

a norm

‖v‖2H(div;Ωp)
= ‖v‖2L2(Ωp)

+ ‖∇ · v‖2L2(Ωp)
,

and the space Vp is equipped with the norm

(2.13) ‖v‖2Vp
= ‖v‖2H(div;Ωp)

+ ‖v · np‖2L2(Γfp)
.
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3. Robin-Robin non-iterative partitioned algorithm

For the solution of the coupled problem presented in Section 2, we consider
a Robin-Robin splitting algorithm motivated by the method proposed in [5]. For
this, we rewrite the coupling conditions (2.8)–(2.10) in the equivalent form of Robin
conditions. To simplify the notation, consider a single tangential vector τ and let
γBJS =

√
Kτ/(μfαBJS). Let γf > 0 and γp > 0 be given combination parameters.

For the fluid sub-problem, we consider the following Robin transmission conditions

γfuf · nf + (σfnf ) · nf = −γf
(
∂tηp + up

)
· np + (σpnp) · np,(3.1a)

γfuf · τ f + (1 + γfγBJS) (σfnf ) · τ f = −γf∂tηp · τ p + (σpnp) · τ p,(3.1b)

while the transmission conditions for the poroelastic structure are

γp(up + ∂tηp) · np + (σpnp) · np = −γpuf · nf + (σfnf ) · nf ,(3.2a)

γp∂tηp · τ p + (σpnp) · τ p = −γpuf · τ f + (1− γpγBJS) (σfnf ) · τ f ,(3.2b)

γp(up + ∂tηp) · np − pp = −γpuf · nf + (σfnf ) · nf .(3.2c)

To simplify the notation, let

af (uf ,vf ) = (2μfD(uf ),D(vf ))Ωf
,

adp(up,vp) = (μfK
−1up,vp)Ωp

,

aep(ηp, ξp) = (2μpD(ηp),D(ξp))Ωp
+ (λp∇ · ηp,∇ · ξp)Ωp

be the bilinear forms related to Stokes, Darcy, and the elasticity operators, respec-
tively. Let

b�(v, w) = −(∇ · v, w)Ω�
.

Using standard techniques involving multiplication by suitable test functions and
integration by parts, as well as the interface transmission conditions (3.1)–(3.2), we
obtain that the solution of the system (2.2)–(2.10), (uf , pf ,ηp,up, pp) : [0, T ] →
Vf ×Wf ×Xp ×Vp ×Wp satisfies the following variational formulation in Ωf : for
each t ∈ (0, T ] and for all (vf , wf ) ∈ Vf ×Wf ,

(ρf∂tuf ,vf )Ωf
+ af (uf ,vf ) + bf (vf , pf )

+ γf 〈uf · nf ,vf · nf 〉Γfp
+ γf 〈uf · τ f ,vf · τ f 〉Γfp

= (ff ,vf )Ωf
− γf 〈(∂tηp + up) · np,vf · nf 〉Γfp

+ 〈(σpnp) · np,vf · nf 〉Γfp
(3.3)

− γf 〈∂tηp · τ p,vf · τ f 〉Γfp
+ 〈(σpnp) · τ p,vf · τ f 〉Γfp

− γfγBJS〈(σfnf ) · τ f ,vf · τ f 〉Γfp
,

− bf (uf , wf ) = (qf , wf )Ωf
,(3.4)

Similarly, in Ωp it holds: for each t ∈ (0, T ] and for all (ξp,vp, wp) ∈ Xp×Vp×Wp,(
ρp∂ttηp, ξp

)
Ωp

+ aep(ηp, ξp) + adp(up,vp) + αbp(ξp, pp) + bp(vp, pp)

+ γp〈(up + ∂tηp) · np, (vp + ξp) · np〉Γfp
+ γp〈∂tηp · τ p, ξp · τ p〉Γfp

= (fp, ξp)Ωp
+ 〈(−γpuf + σfnf ) · nf , (vp + ξp) · np〉Γfp

(3.5)

− γp〈uf · τ f , ξp · τ p〉Γfp
+ (1− γpγBJS)〈(σfnf ) · τ f , ξp · τ p〉Γfp

,

s0(∂tpp, wp)Ωp
− αbp(∂tηp, wp)− bp(up, wp) = (qp, wp)Ωp

.(3.6)
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In the above, we assume that the solution to (2.2)–(2.10) is sufficiently smooth, so
that all interface bilinear forms are continuous.

Let Tf,h and Tp,h be shape-regular finite element partitions of Ωf and Ωp, re-
spectively, consisting of affine elements with maximal diameter h. The two meshes
may not match along Γfp. For the space discretization we consider a stable Stokes
finite element pair Vf,h ×Wf,h ⊂ Vf ×Wf , a finite element space Xp,h ⊂ Xp for
the displacement, and any stable Darcy pair Vp,h × Wp,h ⊂ Vp × Wp. Examples
include the Taylor-Hood or the MINI elements for Vf,h ×Wf,h, continuous piece-
wise polynomials for Xp,h and the Raviart-Thomas or the Brezzi-Douglas-Marini
elements for Vp,h ×Wp,h. See [10] for further details.

Remark 3.1. In the following, in order to simplify the notation, we suppress the
subscript h from the variables.

For the time discretization, we consider a uniform partition of [0, T ] with time
step Δt = T/N and tn = nΔt, n = 0, . . . , N . Let ϕn = ϕ(tn). For n ≥ 0, let
dtϕ

n+1 := (ϕn+1 − ϕn)/Δt. Let dttη
n+1
p := dtdtη

n+1
p = (dtη

n+1
p − dtη

n
p )/Δt for

n ≥ 0. Note that dttη
n+1
p = (ηn+1

p − 2ηn
p + ηn−1

p )/Δt2 for n ≥ 1, while for n = 0,

dtη
0
p := PXus,0, using the initial condition (2.11), where PX : (L2(Ωp))

d → Xp is

the L2-orthogonal projection.
Next, we present a time-splitting Robin-Robin algorithm that is similar to the

iterative scheme introduced in [5]. At every time tn+1, n = 0, . . . , N − 1, the
Robin-Robin algorithm involves solving decoupled fluid and poroelastic structure
sub-problems:

(1) Stokes problem: find (un+1
f , pn+1

f ) ∈ Vf,h×Wf,h such that for all (vf , wf ) ∈
Vf,h ×Wf,h,(

ρfdtu
n+1
f ,vf

)
Ωf

+ af (u
n+1
f ,vf ) + bf (vf , p

n+1
f )

+ γf 〈un+1
f · nf ,vf · nf 〉Γfp

+ γf 〈un+1
f · τ f ,vf · τ f 〉Γfp

= (ff ,vf )Ωf
− γf 〈(dtηn

p + un
p ) · np,vf · nf 〉Γfp

+ 〈(σn
pnp) · np,vf · nf 〉Γfp

− γf 〈dtηn
p · τ p,vf · τ f 〉Γfp

+ 〈(σn
pnp) · τ p,vf · τ f 〉Γfp

− γfγBJS〈(σn
fnf ) · τ f ,vf · τ f 〉Γfp

,

− bf (u
n+1
f , wf ) = (qf , wf )Ωf

,

which is the backward Euler finite element approximation to (3.3)–(3.4), where the
interface quantities from the Biot region as well as the term γfγBJS(σfnf ) · τ f

have been time-lagged. In other words, this is a Stokes problem with the following
Robin boundary conditions on Γfp:

γfu
n+1
f · nf + (σn+1

f nf ) · nf = −γf
(
dtη

n
p + un

p

)
· np + (σn

pnp) · np,(3.7a)

γfu
n+1
f · τ f + (σn+1

f nf ) · τ f + γfγBJS(σ
n
fnf ) · τ f

= −γfdtη
n
p · τ p + (σn

pnp) · τ p.(3.7b)

Using the initial conditions (2.11), at n = 0 we set φ0 := Pφφ0 for any variable
φ, where Pφ is the L2-orthogonal projection onto the corresponding finite element
space, with σ0

f and σ0
p obtained from (2.1) and (2.4), respectively. We also recall

that dtη
0
p = PXus,0.
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(2) Biot problem: find (ηn+1
p ,un+1

p , pn+1
p ) ∈ Xp,h×Vp,h×Wp,h such that for all

(ξp,vp, wp) ∈ Xp,h ×Vp,h ×Wp,h,(
ρpdttη

n+1
p , ξp

)
Ωp

+ aep(η
n+1
p , ξp) + adp(u

n+1
p ,vp) + αbp(ξp, p

n+1
p ) + bp(vp, p

n+1
p )

+ γp〈(un+1
p + dtη

n+1
p ) · np, (vp + ξp) · np〉Γfp

+ γp〈dtηn+1
p · τ p, ξp · τ p〉Γfp

= (fp, ξp)Ωp
+ 〈(−γpu

n+1
f + σn+1

f nf ) · nf , (vp + ξp) · np〉Γfp

− γp〈un+1
f · τ f , ξp · τ p〉Γfp

+ (1− γpγBJS)〈(σn+1
f nf ) · τ f , ξp · τ p〉Γfp

,

s0(dtp
n+1
p , wp)Ωp

− αbp(dtη
n+1
p , wp)− bp(u

n+1
p , wp) = (qp, wp)Ωp

,

which is the backward Euler finite element approximation to (3.5)–(3.6), where
the interface quantities from the Stokes region are obtained in the previous Stokes
solve. In other words, this is a Biot problem with the following Robin boundary
conditions on Γfp:

γp(u
n+1
p + dtη

n+1
p ) · np + (σn+1

p np) · np = −γpu
n+1
f · nf + (σn+1

f nf ) · nf ,

(3.8a)

γpdtη
n+1
p · τ p + (σn+1

p np) · τ p = −γpu
n+1
f · τ f + (1− γpγBJS)(σ

n+1
f nf ) · τ f ,

(3.8b)

γp(u
n+1
p + dtη

n+1
p ) · np − pn+1

p = −γpu
n+1
f · nf + (σn+1

f nf ) · nf .

(3.8c)

We note that the above algorithm involves σfnf and σpnp on Γfp, which in the
continuous setting may not belong to L2(Γfp), while in the finite element method
they require postprocessing from the primary variables and may result in loss of
accuracy. Moreover, the algorithm is difficult to analyze in this form. Motivated
by the Robin-Robin iterative algorithm for the coupled Stokes-Darcy flow problem
developed in [27], we consider the following modified algorithm.

Let Tfp,h be the partition of Γfp obtained from the trace of Tf,h. Let Λh ⊂
(L2(Γfp))

d be a finite element space on Tfp,h defined as

(3.9) Λh := Vf,h|Γfp
.

For 0 ≤ n ≤ N , we introduce an auxiliary interface variable μn = (μn
n, μ

n
τ ) ∈ Λh,

where μn
n = μn · nf and μn

τ = μn · τ f are used to approximate the Robin data on
Γfp. In particular,

μn
n � −γf

(
dtη

n
p + un

p

)
· np + (σn

pnp) · np,(3.10a)

μn
τ � −γfdtη

n
p · τ p + (σn

pnp) · τ p − γfγBJS(σ
n
fnf ) · τ f .(3.10b)

The Robin-Robin non-iterative partitioned algorithm is as follows.

Algorithm 1. Let, for all χ ∈ Λh,

〈μ0
n, χn〉Γfp

= 〈−γf (dtη
0
p + u0

p) · np + σ0
pnp · np, χn〉Γfp

,

〈μ0
τ , χτ 〉Γfp

= 〈−γfdtη
0
p · τp + σ0

pnp · τp − γfγBJS(σ
0
fnf ) · τ f , χτ 〉Γfp

,

where we assume that the initial data is sufficiently smooth.
In the above, and in the following, we write the two equations separately for

clarity, with the understanding that they represent a single equation for μ0, i.e.,
the sum of the two equations holds.

For n = 0, . . . , N − 1, solve
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(1) Stokes problem: find (un+1
f , pn+1

f ) ∈ Vf,h×Wf,h such that for all (vf , wf ) ∈
Vf,h ×Wf,h,(

ρfdtu
n+1
f ,vf

)
Ωf

+ af (u
n+1
f ,vf ) + bf (vf , p

n+1
f )

+ γf 〈un+1
f · nf ,vf · nf 〉Γfp

+ γf 〈un+1
f · τ f ,vf · τ f 〉Γfp

= (ff ,vf )Ωf
+ 〈μn

n,vf · nf 〉Γfp
+ 〈μn

τ ,vf · τ f 〉Γfp
,(3.11)

− bf (u
n+1
f , wf ) = (qf , wf )Ωf

,(3.12)

which corresponds to the weak imposition of the Robin boundary conditions
on Γfp:

γfu
n+1
f · nf + (σn+1

f nf ) · nf = μn
n,(3.13a)

γfu
n+1
f · τ f + (σn+1

f nf ) · τ f = μn
τ .(3.13b)

(2) Biot problem: find (ηn+1
p ,un+1

p , pn+1
p ) ∈ Xp,h,Vp,h,Wp,h such that for all

(ξp,vp, wp) ∈ Xp,h ×Vp,h ×Wp,h,

(
ρpdttη

n+1
p , ξp

)
Ωp

+ aep(η
n+1
p , ξp) + adp(u

n+1
p ,vp) + αbp(ξp, p

n+1
p )

+ bp(vp, p
n+1
p ) + γp〈(un+1

p + dtη
n+1
p ) · np, (vp + ξp) · np〉Γfp

+ γp〈dtηn+1
p · τ p, ξp · τ p〉Γfp

= (fp, ξp)Ωp
+ 〈μn

n − (γp + γf )u
n+1
f · nf , (vp + ξp) · np〉Γfp

(3.14)

+
〈
μn
τ − (γp + γf )u

n+1
f · τ f − γpγBJS(σ

n+1
f nf ) · τ f , ξp · τ p

〉
Γfp

,

s0(dtp
n+1
p , wp)Ωp

− αbp(dtη
n+1
p , wp)− bp(u

n+1
p , wp) = (qp, wp)Ωp

,(3.15)

which corresponds to the weak imposition of the Robin boundary conditions
on Γfp:

γp(u
n+1
p + dtη

n+1
p ) · np + (σn+1

p np) · np

= μn
n − (γp + γf )u

n+1
f · nf

= −γpu
n+1
f · nf + (σn+1

f nf ) · nf ,(3.16a)

γpdtη
n+1
p · τ p + (σn+1

p np) · τ p

= μn
τ − (γp + γf )u

n+1
f · τ f − γpγBJS(σ

n+1
f nf ) · τ f

= −γpu
n+1
f · τ f + (1− γpγBJS)(σ

n+1
f nf ) · τ f ,(3.16b)

γp(u
n+1
p + dtη

n+1
p ) · np − pn+1

p

= μn
n − (γp + γf )u

n+1
f · nf

= −γpu
n+1
f · nf + (σn+1

f nf ) · nf ,(3.16c)

where the second equalities in (3.16a) and (3.16c) are obtained from (3.13a)
and the second equality in (3.16b) is obtained from (3.13b).
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(3) Update: for all χ ∈ Λh,

〈μn+1
n , χn〉Γfp

=
〈
μn
n − (γf + γp)

(
(dtη

n+1
p + un+1

p ) · np + un+1
f · nf

)
, χn

〉
Γfp

,

(3.17a)

〈μn+1
τ , χτ 〉Γfp

(3.17b)

=
〈
μn
τ − (γf + γp)

(
dtη

n+1
p · τ p + un+1

f · τ f + γBJS(σ
n+1
f nf ) · τ f

)
, χτ

〉
Γfp

.

Remark 3.2. Equation (3.17), combined with the first equalities in (3.16a) and
(3.16b), implies that

μn+1
n � −γf

(
dtη

n+1
p + un+1

p

)
· np + (σn+1

p np) · np,(3.18a)

μn+1
τ � −γfdtη

n+1
p · τ p + (σn+1

p np) · τ p − γfγBJS(σ
n+1
f nf ) · τ f .(3.18b)

Remark 3.3. The second equalities in (3.16) indicate that the Robin conditions (3.8)
are weakly imposed in the Biot sub-problem. The expression (3.18a), combined with
(3.13) indicates that the Robin conditions (3.7) are weakly imposed in the Stokes
sub-problem. We emphasize that (3.13), (3.16), and (3.18) are not used in the
forthcoming analysis. Only (3.17) is used.

Remark 3.4. Assuming that ff ∈ (L2(Ωf ))
d, qf ∈ L2(Ωf ), fp ∈ (L2(Ωp))

d, and qp ∈
L2(Ωp), the well-posedness of the sub-domain problems (3.11)–(3.12) and (3.14)–
(3.15) can be shown using standard techniques for the Stokes and Biot systems,
respectively, using the classical Babuska-Brezzi theory [10]. We emphasize the
inclusion of the term ‖v · np‖L2(Γfp) in the norm of Vp, cf. (2.13). Control of this

term is obtained from the term γp〈(un+1
p +dtη

n+1
p ) ·np, (vp+ξp) ·np〉Γfp

in (3.14).

More precisely, this gives control on ‖(un+1
p + ηn+1

p ) · np‖L2(Γfp). Then, the bound

on ‖un+1
p ·np‖L2(Γfp) follows from the triangle inequality, the trace inequality, and

the bound on ‖ηn+1
p ‖H1(Ωp).

4. Stability analysis

In the stability and error analysis we consider the case γBJS = 0, which corre-
sponds to a no-slip condition as it is typical in fluid-structure interaction. Moreover,
we assume that γf = γp = γ. Also, for simplicity, in the stability analysis presented
in this section we consider no forcing terms, i.e., ff = fp = 0 and qf = qp = 0. In
the analysis, we will use the identities

ab =
1

4

(
(a+ b)2 − (a− b)2

)
,(4.1)

a(a− b) =
1

2
(a2 − b2 + (a− b)2).(4.2)

We note that, due to the choice of Λh (3.9), (3.17) implies(
μn+1
n

μn+1
τ

)
=

(
μn
n

μn
τ

)
− 2γ

(
PΛh

(
(dtη

n+1
p + un+1

p ) · np

dtη
n+1
p · τ p

)
+

(
un+1
f · nf

un+1
f · τ f

))
,(4.3)

where PΛh
: (L2(Γfp))

d → Λh is the L2-orthogonal projection satisfying, for any
ϕ ∈ (L2(Γfp))

d,

(4.4)
〈
PΛh

ϕ−ϕ,χ
〉
Γfp

= 0 ∀χ ∈ Λh.
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A scaling argument similar to the one in [30, Lemma 5.1] shows that PΛh
is

stable in ‖ · ‖H1/2(Γfp):

(4.5) ‖PΛh
ϕ‖H1/2(Γfp) ≤ CΛ‖ϕ‖H1/2(Γfp) ∀ϕ ∈ (H1/2(Γfp))

d.

We define the following energy terms, which will be used in the stability estimate.
Let

En =
ρf
2
‖un

f ‖2L2(Ωf )
+

ρp
2
‖dtηn

p‖2L2(Ωp)
+

1

2
‖ηn

p‖2e +
s0
2
‖pnp‖2L2(Ωp)

+
Δt

4γ
‖μn

n‖2L2(Γfp)
+

Δt

4γ
‖μn

τ ‖2L2(Γfp)
,(4.6)

Dn = ‖un
f ‖2f + ‖un

p‖2d,(4.7)

Sn =
ρp
2
‖dtηn

p − dtη
n−1
p ‖2L2(Ωp)

+
ρf
2
‖un

f − un−1
f ‖2L2(Ωf )

+
1

2
‖ηn

p − ηn−1
p ‖2e

+
s0
2
‖pnp − pn−1

p ‖2L2(Ωp)
,(4.8)

where

‖vf‖2f := af (vf ,vf ) = 2μf‖D(vf )‖2Ωf
, ‖vp‖2d = adp(vp,vp) = μf‖K−1/2vp‖2Ωp

,

‖ξp‖2e := aep(ξp, ξp) = ‖μ1/2
p D(ξp)‖2Ωp

+ ‖λ1/2
p ∇ · ξp‖2Ωp

.

The assumptions on the coefficients imply that there exist positive constants cf ,
cd, and ce such that

‖vf‖2f ≥ cf‖vf‖2H1(Ωf )
∀vf ∈ H1(Ωf ), ‖vp‖2d ≥ cd‖vp‖2L2(Ωp)

∀vp ∈ L2(Ωp),

‖ξp‖2e ≥ ce‖ξp‖2H1(Ωp)
∀ξp ∈ H1(Ωp),

(4.9)

where Korn’s and Poincaré inequalities have been utilized in the first and third
inequalities, using that |ΓD

f | > 0.

Theorem 4.1. The following energy inequality holds for Algorithm 1:

(4.10) EN +Δt

N∑
n=1

Dn +

N∑
n=1

Sn ≤ E0.

Proof. Taking vf = un+1
f and wf = pn+1

f in (3.11)–(3.12), we obtain

ρf
Δt

(
un+1
f − un

f ,u
n+1
f

)
Ωf

+ af (u
n+1
f ,un+1

f )

=
1

γ

〈
μn
n − γun+1

f · nf , γu
n+1
f · nf

〉
Γfp

+
1

γ

〈
μn
τ − γun+1

f · τ f , γu
n+1
f · τ f

〉
Γfp

=
1

4γ

∫
Γfp

(μn
n)

2 − 1

4γ

∫
Γfp

(μn
n − 2γun+1

f · nf )
2

+
1

4γ

∫
Γfp

(μn
τ )

2 − 1

4γ

∫
Γfp

(μn
τ − 2γun+1

f · τ f )
2,

(4.11)
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where we used (4.1) in the last equality. Taking vp = un+1
p , wp = pn+1

p , and

ξp = dtη
n+1
p in (3.14)–(3.15), we obtain

ρp
Δt

(
dtη

n+1
p − dtη

n
p , dtη

n+1
p

)
Ωp

+
1

Δt
aep(η

n+1
p ,ηn+1

p − ηn
p ) +

1

Δt
s0(p

n+1
p − pnp , p

n+1
p )Ωp

+ adp(u
n+1
p ,un+1

p )

=
1

γ

〈
μn
n − γ(un+1

p + dtη
n+1
p ) · np − 2γun+1

f · nf , γ(u
n+1
p + dtη

n+1
p ) · np

〉
Γfp

+
1

γ

〈
μn
τ − γdtη

n+1
p · τ p − 2γun+1

f · τ f , γdtη
n+1
p · τ p

〉
Γfp

=
1

γ

〈(
μn
n

μn
τ

)
− γPΛh

(
(dtη

n+1
p + un+1

p ) · np

dtη
n+1
p · τ p

)
− 2γ

(
un+1
f · nf

un+1
f · τ f

)
,

γPΛh

(
(dtη

n+1
p + un+1

p ) · np

dtη
n+1
p · τ p

)〉
Γfp

− γ

〈(
(dtη

n+1
p + un+1

p ) · np

dtη
n+1
p · τ p

)
− PΛh

(
(dtη

n+1
p + un+1

p ) · np

dtη
n+1
p · τ p

)
,(

(dtη
n+1
p + un+1

p ) · np

dtη
n+1
p · τ p

)
− PΛh

(
(dtη

n+1
p + un+1

p ) · np

dtη
n+1
p · τ p

)〉
Γfp

,

(4.12)

where we used (4.4) in the last equality. Then, using (4.1) and (4.3), and dropping
the last term in (4.12), we obtain

ρp
Δt

(
dtη

n+1
p − dtη

n
p , dtη

n+1
p

)
Ωp

+
1

Δt
aep(η

n+1
p ,ηn+1

p − ηn
p )

+
1

Δt
s0(p

n+1
p − pnp , p

n+1
p )Ωp

+ adp(u
n+1
p ,un+1

p )

≤ 1

4γ

∫
Γfp

(μn
n − 2γun+1

f · nf )
2 − 1

4γ

∫
Γfp

(μn+1
n )2

+
1

4γ

∫
Γfp

(μn
τ − 2γun+1

f · τ f )
2 − 1

4γ

∫
Γfp

(μn+1
τ )2.

(4.13)

Summing (4.11) and (4.13) and using (4.2) gives

ρf
2Δt

(un+1
f ,un+1

f )Ωf
+

ρf
2Δt

(un+1
f − un

f ,u
n+1
f − un

f )Ωf

+ af (u
n+1
f ,un+1

f ) + adp(u
n+1
p ,un+1

p )

+
ρp
2Δt

(dtη
n+1
p , dtη

n+1
p )Ωp

+
ρp
2Δt

(dtη
n+1
p − dtη

n
p , dtη

n+1
p − dtη

n
p )Ωp

+
1

2Δt
aep(η

n+1
p ,ηn+1

p ) +
1

2Δt
aep(η

n+1
p − ηn

p ,η
n+1
p − ηn

p ) +
s0
2Δt

(pn+1
p , pn+1

p )Ωp

+
s0
2Δt

(pn+1
p − pnp , p

n+1
p − pnp )Ωp

+
1

4γ

∫
Γfp

(μn+1
n )2 +

1

4γ

∫
Γfp

(μn+1
τ )2

≤ ρf
2Δt

(un
f ,u

n
f )Ωf

+
ρp
2Δt

(dtη
n
p , dtη

n
p )Ωp

+
1

2Δt
aep(η

n
p ,η

n
p ) +

s0
2Δt

(pnp , p
n
p )Ωp

+
1

4γ

∫
Γfp

(μn
n)

2 +
1

4γ

∫
Γfp

(μn
τ )

2.
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Finally, multiplying by Δt and summing over n implies

ρf
2
(uN

f ,uN
f )Ωf

+
ρp
2
(dtη

N
p , dtη

N
p )Ωp

+
1

2
aep(η

N
p ,ηN

p ) +
s0
2
(pNp , pNp )Ωp

+
Δt

4γ

∫
Γfp

(μN
n )2 +

Δt

4γ

∫
Γfp

(μN
τ )2 +Δt

N−1∑
n=0

(
af (u

n+1
f ,un+1

f ) + adp(u
n+1
p ,un+1

p )
)

+

N−1∑
n=0

(ρp
2
(dtη

n+1
p − dtη

n
p , dtη

n+1
p − dtη

n
p )Ωp

+
ρf
2
(un+1

f − un
f ,u

n+1
f − un

f )Ωf

+
1

2
aep(η

n+1
p − ηn

p ,η
n+1
p − ηn

p ) +
s0
2
(pn+1

p − pnp , p
n+1
p − pnp )Ωp

)
=

ρf
2
(u0

f ,u
0
f )Ωf

+
ρp
2
(dtη

0
p, dtη

0
p)Ωp

+
1

2
aep(η

0
p,η

0
p) +

s0
2
(p0p, p

0
p)Ωp

+
Δt

4γ

∫
Γfp

(μ0
n)

2 +
Δt

4γ

∫
Γfp

(μ0
τ )

2,

which gives (4.10). �
Bound (4.10) provides control on un

f , u
n
p , p

n
p , η

n
p , and dtη

n
p . Bound on ‖pnf ‖L2(Ωf )

can be obtained using that Vf,h×Wf,h is a stable Stokes pair satisfying the inf-sup
condition [34, Lemma 4.1]

(4.14) ∀wf ∈ Wf,h, sup
vf∈Vf,h:vf |Γfp=0

bf (vf , wf )

‖vf‖H1(Ωf )
≥ βf‖wf‖L2(Ωf ).

Additionally, the control on pnp depends on s0, which in practice can be very small.
A bound on pnp independent of s0 can be obtained from the discrete Darcy inf-sup
condition [10]

(4.15) ∀wp ∈ Wp,h, sup
vp∈Vp,h:vp|Γfp=0

bp(vp, wp)

‖vp‖H(div;Ωp)
≥ βp‖wp‖L2(Ωp).

We further note that the Δt scaling in the terms Δt‖μN
n ‖2L2(Γfp)

and Δt‖μN
τ ‖2L2(Γfp)

in EN , cf. (4.6), implies that the stability bound on ‖μN
n ‖L2(Γfp) and ‖μN

τ ‖L2(Γfp)

obtained in (4.10) scales like
√
Δt−1. A stability bound on μn that is optimal with

respect to Δt can be obtained in the norm ‖ · ‖H−1/2(Γfp), which is the dual of

‖ · ‖H1/2(Γfp). For simplicity, we present the arguments for the quasistatic Stokes

model, where the term ρf (dtu
n+1
f ,vf )Ωf

in (3.11) is not present. Let Ẽn be En

without the term
ρf

2 ‖un
f ‖2L2(Ωf )

and let

D̃n = ‖un
f ‖2f + ‖un

p‖2d + ‖pnf ‖2L2(Ωf )
+ ‖μn−1‖2H−1/2(Γfp)

+ ‖pnp‖2L2(Ωp)
.

Theorem 4.2. The following energy inequality holds for the quasistatic Stokes
version of Algorithm 1:

(4.16) ẼN +Δt

N∑
n=1

D̃n +

N∑
n=1

Sn ≤ CẼ0.

Proof. A bound on ‖pnf ‖L2(Ωf ) can be obtained from (4.14) and (3.11). Noting

that the restriction vf |Γfp
= 0 in (4.14) eliminates all interface terms in (3.11), we

obtain

(4.17) ‖pn+1
f ‖L2(Ωf ) ≤ C‖un+1

f ‖H1(Ωf ).
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Similarly, (4.15) and (3.14) with ξp = 0 imply

(4.18) ‖pn+1
p ‖L2(Ωp) ≤ C‖un+1

p ‖L2(Ωp).

Next, we have

‖μn‖H−1/2(Γfp) = sup
ϕ∈(H1/2(Γfp))d

〈ϕ,μn〉Γfp

‖ϕ‖H1/2(Γfp)

= sup
ϕ∈(H1/2(Γfp))d

〈PΛh
ϕ,μn〉Γfp

‖ϕ‖H1/2(Γfp)

≤ CΛ sup
ϕ∈(H1/2(Γfp))d

〈PΛh
ϕ,μn〉Γfp

‖PΛh
ϕ‖H1/2(Γfp)

.

Since Λh = Vf,h|Γfp
, there exists a discrete Stokes extension Ef,h : Λh → Vf,h

such that for each χ ∈ Λh, Ef,h χ|Γfp
= χ and ‖Ef,hχ‖H1(Ωf ) ≤ Cext‖χ‖H1/2(Γfp).

Therefore,

‖μn‖H−1/2(Γfp) ≤ CΛCext sup
ϕ∈(H1/2(Γfp))d

〈Ef,hPΛh
ϕ,μn〉Γfp

‖Ef,hPΛh
ϕ‖H1(Ωf )

≤ CΛCext sup
vf∈Vf,h

〈vf ,μ
n〉Γfp

‖vf‖H1(Ωf )

≤ C
(
‖un+1

f ‖H1(Ωf ) + ‖pn+1
f ‖L2(Ωf )

)
,

(4.19)

using (3.11) for the last inequality. Bound (4.16) follows from combining (4.17)–
(4.19) with (4.10). �

Remark 4.1. In the fully dynamic model, in order to control ‖pn+1
f ‖L2(Ωf ), we need

first to bound ‖dtun+1
f ‖L2(Ωf ), which can be done by applying the discrete time

differentiation operator dt to the entire system. We omit further details.

Remark 4.2. There is no restriction on Δt in the bounds obtained in Theorems 4.1
and 4.2, implying unconditionally stability of the non-iterative Robin-Robin method
given in Algorithm 1. A key component for this property is the introduction of the
auxiliary interface variable μ in (3.10), which allows us to control the splitting error
in the Stokes problem boundary conditions

γun+1
f · nf + (σn+1

f nf ) · nf = −γ
(
dtη

n
p + un

p

)
· np + (σn

pnp) · np,

γun+1
f · τ f + (σn+1

f nf ) · τ f = −γdtη
n
p · τ p + (σn

pnp) · τ p.

In particular, the terms
1

4γ

∫
Γfp

(μn
n−2γun+1

f ·nf )
2 and

1

4γ

∫
Γfp

(μn
τ −2γun+1

f ·τ f )
2

appear in both the Stokes (4.11) and Biot (4.12) energy equations and cancel out.
In addition, the specially defined update (3.17) results in a telescoping sum for
μ when the two equations are combined. We would also like to emphasize an
important difference with the unconditionally stable FSI methods in [17, 18, 43],
where the boundary condition in the second solve (which is Stokes in these papers)
is

γun+1
f + σn+1

f nf = γdtη
n+1
p + σn

fnf .

This allows for them to write γ(un+1
f − dtη

n+1
p ) = σn

fnf − σn+1
f nf , which is used

in the stability analysis. We note that the most recent value of σn+1
p is not used in
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A ROBIN-ROBIN METHOD FOR THE STOKES-BIOT MODEL 15

the Stokes boundary condition, which results in additional time-splitting error. In
contrast, the boundary condition in our second solve (which is Biot) is

γdtη
n+1
p + σn+1

p np = γun+1
f + σn+1

f np,

which does not induce extra time-splitting error.

5. Time discretization error analysis for the quasistatic model

In this section we analyze the time discretization error in the Robin-Robin
method given in (3.11)–(3.12), (3.14)–(3.15), and (3.17). To this end, we con-
sider the semidiscrete continuous in space version of the algorithm and compare
its solution to the variational formulation (3.3)–(3.6). In addition, for the sake of
simplicity, we focus on the quasistatic model, where the terms ρf∂tuf and ρp∂ttηp

are omitted. In this section we assume that Γfp is at least C1.
Introducing the continuous versions of μn and μτ from (3.10),

μn(t) := −γ(∂tηp(t) + up(t)) · np + σp(t)np · np,(5.1a)

μτ (t) := −γ∂tηp(t) · τ p + σp(t)np · τ p,(5.1b)

the system (3.3)–(3.6) in the quasistatic case can be rewritten as

af (uf ,vf ) + bf (vf , pf ) + γ〈uf · nf ,vf · nf 〉Γfp
+ γ〈uf · τ f ,vf · τ f 〉Γfp

= (ff ,vf )Ωf
+ 〈μn,vf · nf 〉Γfp

+ 〈μτ ,vf · τ f 〉Γfp
(5.2)

− bf (uf , wf ) = (qf , wf )Ωf
,(5.3)

aep(ηp, ξp) + adp(up,vp) + αbp(ξp, pp) + bp(vp, pp)

+ γ〈(up + ∂tηp) · np, (vp + ξp) · np〉Γfp
+ γ〈∂tηp · τ p, ξp · τ p〉Γfp

= (fp,vp)Ωp
+ 〈μn − 2γuf · nf , (vp + ξp) · np〉Γfp

+ 〈μτ − 2γuf · τ f , ξp · τ p〉Γfp
,(5.4)

s0(∂tpp, wp)Ωp
− αbp(∂tηp, wp)− bp(up, wp) = (qp, wp)Ωp

.(5.5)

Let us define the error terms for i = f, p as follows:

Un+1
i = ui(tn+1)− un+1

i , Pn+1
i =pi(tn+1)− pn+1

i , Hn+1
p = ηp(tn+1)− ηn+1

p .

Additionally, we define a splitting error and a time discretization error operator
acting on the exact solutions as follows:

S
n+1(φ) := φ(tn+1)− φ(tn),

T
n+1(φ) := ∂tφ(tn+1)− dtφ(tn+1),

where we recall dtφ(tn+1) :=
φ(tn+1)−φ(tn)

Δt . We note that the argument of Tn+1 can
be either a vector or a scalar. Next, we define variations of μn and μτ with discrete
time derivatives:

μ̃n(tn) := −γ(dtηp(tn) + up(tn)) · np + σp(tn)np · np,(5.6a)

μ̃τ (tn) := −γdtηp(tn) · τ p + σp(tn)np · τ p.(5.6b)

Consequently, it follows that

μn(tn) =μ̃n(tn)− γTn(ηp) · np,(5.7a)

μτ (tn) =μ̃τ (tn)− γTn(ηp) · τ p.(5.7b)
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16 A. DALAL, R. DURST, A. QUAINI, AND I. YOTOV

We define the interface error terms:

Mn
n := μ̃n(tn)− μn

n,(5.8a)

Mn
τ := μ̃τ (tn)− μn

τ .(5.8b)

Consequently, we have

μn(tn+1)− μn
n = (μn(tn+1)− μn(tn)) + μn(tn)− μn

n

= S
n+1(μn) + μn(tn)− μ̃n(tn) + μ̃n(tn)− μn

n

= S
n+1(μn)− γTn(ηp) · np +Mn

n ,(5.9)

and, by the same argument,

(5.10) μτ (tn+1)− μn
τ = S

n+1(μτ )− γTn(ηp) · τ p +Mn
τ .

We note that in the continuous in space case considered in this section, the update
(4.3) simplifies to

μn+1
n = μn

n − 2γ
(
(dtη

n+1
p + un+1

p ) · np + un+1
f · nf

)
,(5.11a)

μn+1
τ = μn

τ − 2γ
(
dtη

n+1
p · τ p + un+1

f · τ f

)
.(5.11b)

Theorem 5.1. Assuming that the solution to (2.2)–(2.10) is sufficiently smooth,
the following error estimate holds for the quasistatic continuous in space version of
Algorithm 1:

max
1≤n≤N

(
‖Hn

p‖e + ‖Pn
p ‖L2(Ωp)

)
+

(
Δt

N∑
n=1

‖Un
f ‖2f

)1/2

+

(
Δt

N∑
n=1

‖Un
p‖2d

)1/2

+

(
Δt

N∑
n=1

‖Pn
f ‖2L2(Ωf )

)1/2

+

(
Δt

N∑
n=1

‖Pn
p ‖2L2(Ωp)

)1/2

+

(
Δt

N−1∑
n=0

‖Mn‖2H−1/2(Γfp)

)1/2

= O(
√
TΔt).

(5.12)

Proof. Subtracting (3.11)–(3.12) from (5.2)–(5.3) at t = tn+1 and applying (5.9)
and (5.10) yields

af (U
n+1
f ,vf ) + bf (vf , P

n+1
f ) + γ〈Un+1

f · nf ,vf · nf 〉Γfp

+ γ〈Un+1
f · τ f ,vf · τ f 〉Γfp

= 〈μn(tn+1)− μn
n,vf · nf 〉Γfp

+ 〈μτ (tn+1)− μn
τ ,vf · τ f 〉Γfp

= 〈Mn
n ,vf · nf 〉Γfp

+ 〈Mn
τ ,vf · τ f 〉Γfp

(5.13)

+ 〈Sn+1(μn)− γTn(ηp) · np,vf · nf 〉Γfp

+ 〈Sn+1(μτ )− γTn(ηp) · τ p,vf · τ f 〉Γfp
,

− bf (U
n+1
f , wf ) = 0.(5.14)

Take vf = Un+1
f and wf = Pn+1

f in (5.13)–(5.14) and add them up to obtain

af (U
n+1
f ,Un+1

f ) + γ〈Un+1
f · nf ,U

n+1
f · nf 〉Γfp

+ γ〈Un+1
f · τf ,Un+1

f · τf 〉Γfp

= 〈Mn
n ,U

n+1
f · nf 〉Γfp

+ 〈Mn
τ ,U

n+1
f · τ f 〉Γfp

+ I1,

(5.15)
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A ROBIN-ROBIN METHOD FOR THE STOKES-BIOT MODEL 17

where

I1 := 〈Sn+1(μn)− γTn(ηp) · np,U
n+1
f · nf 〉Γfp

+ 〈Sn+1(μτ )− γTn(ηp) · τ p,U
n+1
f · τ f 〉Γfp

.
(5.16)

We can manipulate (5.15) as follows:

af (U
n+1
f ,Un+1

f ) =
1

γ
〈Mn

n − γUn+1
f · nf , γU

n+1
f · nf 〉Γfp

+
1

γ
〈Mn

τ − γUn+1
f · τ f , γU

n+1
f · τ f 〉Γfp

+ I1.

By applying (4.1), we have

af (U
n+1
f ,Un+1

f ) =
1

4γ

(
‖Mn

n ‖2L2(Γfp )
− ‖Mn

n − 2γUn+1
f · nf‖2L2(Γfp )

)
+

1

4γ

(
‖Mn

τ ‖2L2(Γfp )
− ‖Mn

τ − 2γUn+1
f · τ f‖2L2(Γfp )

)
+ I1.

(5.17)

For the Biot problem, subtracting (3.14)–(3.15) from (5.4)–(5.5) at t = tn+1, we
obtain

aep(H
n+1
p , ξp) + adp(U

n+1
p ,vp) + αbp(ξp, P

n+1
p ) + bp(vp, P

n+1
p )

+ γ〈(Un+1
p + dtH

n+1
p ) · np, (vp + ξp) · np〉Γfp

+ γ〈Tn+1(ηp) · np, (vp + ξp) · np〉Γfp

+ γ〈dtHn+1
p · τ p, ξp · τ p〉Γfp

+ γ〈Tn+1(ηp) · τ p, ξp · τ p〉Γfp

= 〈μn(tn+1)− μn
n − 2γUn+1

f · nf , (vp + ξp) · np〉Γfp

+ 〈μτ (tn+1)− μn
τ − 2γUn+1

f · τ f , ξp · τ p〉Γfp
(5.18)

s0(dtP
n+1
p , wp)Ωp

+ s0(T
n+1(pp), wp)Ωp

− αbp(dtH
n+1
p , wp)− αbp(T

n+1(ηp), wp)− bp(U
n+1
p , wp) = 0.(5.19)

Letting vp = Un+1
p , ξp = dtH

n+1
p , and wp = Pn+1

p in (5.18)–(5.19), adding them
up and using (5.9) and (5.10), we have

aep(H
n+1
p , dtH

n+1
p ) + s0(dtP

n+1
p , Pn+1

p )Ωp
+ adp(U

n+1
p ,Un+1

p )

+ γ〈(Un+1
p + dtH

n+1
p ) · np, (U

n+1
p + dtH

n+1
p ) · np〉Γfp

+ γ〈dtHn+1
p · τ p, dtH

n+1
p · τ p〉Γfp

= 〈Mn
n − 2γUn+1

f · nf , (U
n+1
p + dtH

n+1
p ) · np〉Γfp

+ 〈Mn
τ − 2γUn+1

f · τ f , dtH
n+1
p · τ p〉Γfp

+ 〈Sn+1(μn)− γTn(ηp) · np, (U
n+1
p + dtH

n+1
p ) · np〉Γfp

+ 〈Sn+1(μτ )− γTn(ηp) · τ p, dtH
n+1
p · τ p〉Γfp

− γ〈Tn+1(ηp) · np, (U
n+1
p + dtH

n+1
p ) · np〉Γfp

− γ〈Tn+1(ηp) · τ p, dtH
n+1
p · τ p〉Γfp

− s0(T
n+1(pp), P

n+1
p )Ωp

+ αbp(T
n+1(ηp), P

n+1
p ).

(5.20)
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18 A. DALAL, R. DURST, A. QUAINI, AND I. YOTOV

Equation (5.20) can be rewritten as follows:

aep(H
n+1
p , dtH

n+1
p ) + s0(dtP

n+1
p , Pn+1

p )Ωp
+ adp(U

n+1
p ,Un+1

p )

= 〈Mn
n − 2γUn+1

f · nf − γ(Un+1
p + dtH

n+1
p ) · np, (U

n+1
p + dtH

n+1
p ) · np〉Γfp

+ 〈Mn
τ − 2γUn+1

f · τ f − γdtH
n+1
p · τ p, dtH

n+1
p · τ p〉Γfp

+ 〈An
n, (U

n+1
p + dtH

n+1
p ) · np〉Γfp

+ 〈Aτ , dtH
n+1
p · τ f 〉Γfp

+ I2,

(5.21)

where

An
n := S

n+1(μn)− γ(Tn(ηp) + T
n+1(ηp)) · np,(5.22a)

An
τ := S

n+1(μτ )− γ(Tn(ηp) + T
n+1(ηp)) · τ p,(5.22b)

I2 := −s0(T
n+1(pp), P

n+1
p )Ωp

+ αbp(T
n+1(ηp), P

n+1
p ).(5.22c)

Using (4.1), we obtain from (5.21):

aep(H
n+1
p , dtH

n+1
p ) + s0(dtP

n+1
p , Pn+1

p )Ωp
+ adp(U

n+1
p ,Un+1

p )

=
1

4γ
‖Mn

n − 2γUn+1
f · nf‖2L2(Γfp )

− 1

4γ
‖Mn

n − 2γUn+1
f · nf − 2γ(Un+1

p + dtH
n+1
p ) · np‖2L2(Γfp )

+
1

4γ
‖Mn

τ − 2γUn+1
f · τ f‖2L2(Γfp )

− 1

4γ
‖Mn

τ − 2γUn+1
f · τ f − 2γdtH

n+1
p · τ p‖2L2(Γfp )

+ 〈An
n, (U

n+1
p + dtH

n+1
p ) · np〉Γfp + 〈An

τ , dtH
n+1
p · τ p〉Γfp

+ I2.

(5.23)

For the second term on the right-hand side above, we have

Mn
n − 2γUn+1

f · nf − 2γ(Un+1
p + dtH

n+1
p ) · np

= μ̃n(tn)− μn
n − 2γuf (tn+1) · nf − 2γ(up(tn+1) + ∂tηp(tn+1)) · np

+ 2γTn+1(ηp) · np + 2γun+1
f · nf + 2γ(un+1

p + dtη
n+1
p ) · np

= μ̃n(tn)− μn
n + 2γTn+1(ηp) · np − μn+1

n + μn
n

= μ̃n(tn) + 2γTn+1(ηp) · np − μn+1
n − μ̃n(tn+1) + μ̃n(tn+1)

− γTn(ηp) · np + γTn(ηp) · np

= μ̃n(tn+1)− μn+1
n − (μ̃n(tn+1)− γTn+1(ηp) · np) + (μ̃n(tn)− γTn(ηp) · np)

+ γ(Tn+1(ηp) + T
n(ηp)) · np

= Mn+1
n − S

n+1(μn) + γ(Tn+1(ηp) + T
n(ηp)) · np

= Mn+1
n −An

n,

(5.24)

where we have applied (5.8a), (2.8), (5.11a), (5.7a), and (5.22a). By an analogous
argument, we have

Mn
τ − 2γUn+1

f · τ f − 2γdtH
n+1
p · τ p = Mn+1

τ −An
τ .(5.25)
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Applying (5.24) and (5.25) to (5.23), we obtain

aep(H
n+1
p , dtH

n+1
p ) + s0(dtP

n+1
p , Pn+1

p )Ωp
+ adp(U

n+1
p ,Un+1

p )

=
1

4γ
‖Mn

n − 2γUn+1
f · nf‖2L2(Γfp )

− 1

4γ
‖Mn+1

n ‖2L2(Γfp )

+
1

4γ
‖Mn

τ − 2γUn+1
f · τ f‖2L2(Γfp )

− 1

4γ
‖Mn+1

τ ‖2L2(Γfp )

+
1

2γ
〈An

n,M
n+1
n + 2γ(Un+1

p + dtH
n+1
p ) · np〉

+
1

2γ
〈An

τ ,M
n+1
τ + 2γdtH

n+1
p · τ p〉

− 1

4γ
‖An

n‖2L2(Γfp )
− 1

4γ
‖An

τ ‖2L2(Γfp )
+ I2.

(5.26)

We note that, using (5.22a) and (5.22b), I1 may be rewritten as

I1 =
1

2γ
〈An

n, 2γU
n+1
f · nf 〉Γfp

+
1

2γ
〈An

τ , 2γU
n+1
f · τ f 〉Γfp

+ 〈γTn+1(ηp) · np,U
n+1
f · nf 〉Γfp

+ 〈γTn+1(ηp) · τ p,U
n+1
f · τ f 〉Γfp

.

Next, we combine (5.26) and (5.17) and use the above expression to get

aep(H
n+1
p , dtH

n+1
p ) + s0(dtP

n+1
p , Pn+1

p )Ωp
+ af (U

n+1
f ,Un+1

f ) + adp(U
n+1
p ,Un+1

p )

=
1

4γ

(
‖Mn

n ‖2L2(Γfp )
− ‖Mn+1

n ‖2L2(Γfp )

)
+

1

4γ

(
‖Mn

τ ‖2L2(Γfp )
− ‖Mn+1

τ ‖2L2(Γfp )

)
+

1

2γ
〈Mn+1

n + 2γUn+1
f · nf + 2γ(Un+1

p + dtH
n+1
p ) · np, A

n
n〉Γfp

+
1

2γ
〈Mn+1

τ + 2γUn+1
f · τ f + 2γdtH

n+1
p · τ p, A

n
τ 〉Γfp

− 1

4γ
‖An

n‖2L2(Γfp )
− 1

4γ
‖An

τ ‖2L2(Γfp )
+ I2 + I3,

(5.27)

where

(5.28) I3 := 〈γTn+1(ηp) · np,U
n+1
f · nf 〉Γfp

+ 〈γTn+1(ηp) · τ p,U
n+1
f · τ f 〉Γfp

.

From (5.24) and (5.25), it follows that

Mn+1
n + 2γUn+1

f · nf + 2γ(Un+1
p + dtH

n+1
p ) · np = Mn

n +An
n,(5.29a)

Mn+1
τ + 2γUn+1

f · τ f + 2γdtH
n+1
p · τ p = Mn

τ +An
τ .(5.29b)
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Therefore, combining (5.27) and (5.29), we have

aep(H
n+1
p , dtH

n+1
p ) + s0(dtP

n+1
p , Pn+1

p )Ωp
+ af (U

n+1
f ,Un+1

f ) + adp(U
n+1
p ,Un+1

p )

=
1

4γ

(
‖Mn

n ‖2L2(Γfp )
− ‖Mn+1

n ‖2L2(Γfp )

)
+

1

4γ

(
‖Mn

τ ‖2L2(Γfp )
− ‖Mn+1

τ ‖2L2(Γfp )

)
+

1

2γ
〈Mn

n +An
n, A

n
n〉Γfp

+
1

2γ
〈Mn

τ +An
τ , A

n
τ 〉Γfp

− 1

4γ
‖An

n‖2L2(Γfp )
− 1

4γ
‖An

τ ‖2L2(Γfp )
+ I2 + I3

=
1

4γ

(
‖Mn

n ‖2L2(Γfp )
− ‖Mn+1

n ‖2L2(Γfp )

)
+

1

4γ

(
‖Mn

τ ‖2L2(Γfp )
− ‖Mn+1

τ ‖2L2(Γfp )

)
+

1

2γ
〈Mn

n , A
n
n〉Γfp

+
1

2γ
〈Mn

τ , A
n
τ 〉Γfp

+
1

4γ
‖An

n‖2L2(Γfp )
+

1

4γ
‖An

τ ‖2L2(Γfp )

+ I2 + I3.

(5.30)

For the mixed terms on the right hand side, let Mn = (Mn
n ,M

n
τ ) and An =

(An
n, A

n
τ ). Since Γfp is assumed to be C1, it holds that An ∈ (H1/2(Γfp))

d. We
have

1

2γ
〈Mn

n , A
n
n〉Γfp

+
1

2γ
〈Mn

τ , A
n
τ 〉Γfp

=
1

2γ
〈Mn,An〉Γfp

≤ 1

2γ
‖Mn‖H−1/2(Γfp)‖A

n‖H1/2(Γfp)

≤ ε

4γ
‖Mn‖2H−1/2(Γfp)

+
1

4εγ
‖An‖2H1/2(Γfp)

,

(5.31)

where we have used the duality of ‖·‖H−1/2(Γfp) and ‖·‖H1/2(Γfp), as well as Young’s

inequality. Using the continuous version of the inf-sup condition (4.14) and (5.13),
we obtain

(5.32) ‖Pn+1
f ‖L2(Ωf ) ≤

√
Cf

βf
‖Un+1

f ‖f ,

where Cf is the continuity constant, af (uf ,vf ) ≤ Cf‖uf‖H1(Ωf )‖vf‖H1(Ωf ). Next,
similarly to (4.19), from (5.13) we have

1

Cext
‖Mn‖H−1/2(Γfp) ≤

√
Cf (1 + γC2

tr)‖Un+1
f ‖f

+ ‖Pn+1
f ‖L2(Ωf ) + Ctr‖Sn+1(μ)− γTn(ηp)‖H−1/2(Γfp),

(5.33)

where Ctr is the trace inequality constant, ‖vf‖H1/2(Γfp) ≤ Ctr‖vf‖H1(Ωf ). Com-

bining (5.32) and (5.33) implies that

(5.34) ‖Mn‖2H−1/2(Γfp)
≤ C̃f

(
‖Un+1

f ‖2f + ‖Bn‖2H−1/2(Γfp)

)
,

where Bn := S
n+1(μ)− γTn(ηp). Taking ε = γ

˜Cf
in (5.31) and using (5.34) results

in

(5.35)
1

2γ
〈Mn,An〉Γfp

≤ 1

4
‖Un+1

f ‖2f +
1

4
‖Bn‖2H−1/2(Γfp)

+
C̃f

4γ2
‖An‖2H1/2(Γfp)

.
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It remains to bound I2 and I3. To this end, we first note that the continuous
version of the inf-sup condition (4.15) and (5.18) with ξp = 0 imply

(5.36) ‖Pn+1
p ‖2L2(Ωp)

≤ C̃p‖Un+1
p ‖2d.

Now, Using the Cauchy-Schwarz and Young’s inequalities, we have

|I2| ≤ s20C̃p‖Tn+1(pp)‖2L2(Ωp)
+

1

4C̃p

‖Pn+1
p ‖2L2(Ωp)

+ α2C̃p‖∇ · Tn+1(ηp)‖2L2(Ωp)
+

1

4C̃p

‖Pn+1
p ‖2L2(Ωp)

≤ s20C̃p‖Tn+1(pp)‖2L2(Ωp)
+ α2C̃p‖∇ · Tn+1(ηp)‖2L2(Ωp)

+
1

2
‖Un+1

p ‖2d,(5.37)

|I3| ≤ γ2

2ε
‖Tn+1(ηp)‖2H−1/2(Γfp)

+
ε

2
‖Un+1

f ‖2H1/2(Γfp)

≤ γ2

2ε
‖Tn+1(ηp)‖2H−1/2(Γfp)

+
εC2

tr

2cf
‖Un+1

f ‖2f

≤ γ2C2
tr

cf
‖Tn+1(ηp)‖2H−1/2(Γfp)

+
1

4
‖Un+1

f ‖2f ,(5.38)

where we used the trace inequality and the coercivity bound for af in (4.9) and
chose ε = cf/(2C

2
tr).

Applying bounds (5.35) and (5.37)–(5.38) in (5.30), using that a(a−b) ≥ 1
2 (a

2−
b2) (cf. (4.2)) for the first four terms on the left-hand side, as well as the coercivity
bounds (4.9) yields

1

2Δt

(
‖Hn+1

p ‖2e − ‖Hn
p‖2e

)
+

s0
2Δt

(
‖Pn+1

p ‖2L2(Ωp)
− ‖Pn

p ‖2L2(Ωp)

)
+

1

2
‖Un+1

f ‖2f +
1

2
‖Un+1

p ‖2d +
1

4γ

(
‖Mn+1‖2L2(Γfp )

− ‖Mn‖2L2(Γfp )

)
≤ Jn,

(5.39)

where

Jn :=
1

4
‖Bn‖2H−1/2(Γfp)

+
C̃f

4γ2
‖An‖2H1/2(Γfp)

+
1

4γ
‖An‖2L2(Γfp )

+ s20C̃p‖Tn+1(pp)‖2L2(Ωp)
+ α2C̃p‖∇ · Tn+1(ηp)‖2L2(Ωp)

+
γ2C2

tr

cf
‖Tn+1(ηp)‖2L2(Γfp)

.

We multiply (5.39) by Δt and sum from n = 0 to m − 1, for 1 ≤ m ≤ N , which
yields

1

2
‖Hm

p ‖2e +
s0
2
‖Pm

p ‖2L2(Ωp)
+

Δt

2

m−1∑
n=0

‖Un+1
f ‖2f

+
Δt

2

m−1∑
n=0

‖Un+1
p ‖2d +

Δt

4γ
‖Mm‖2L2(Γfp )

≤ Δt

m−1∑
n=0

Jn + ‖H0
p‖2e +

s0
2
‖P 0

p ‖2L2(Ωp)
+

Δt

4γ
‖M0‖2L2(Γfp )

.

(5.40)
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All initial error terms above are zero. In particular, H0
p = 0 and P 0

p = 0 from the

choice of initial numerical values, and dtηp(t0)−dtη
0
p = us,0−us,0 = 0 implies that

M0 = 0. For the term Jn, which collects all time splitting and time discretization
errors, assuming that the solution is sufficiently smooth, it is straightforward to

show that Jn = O(Δt2), hence Δt
∑m−1

n=0 Jn = O(TΔt2). Therefore, using that
(5.40) holds for all 1 ≤ m ≤ N and combining it with (5.32), (5.34), and (5.36), we
obtain (5.12). �

6. Iterative algorithm

The algorithm discussed in the previous sections solves one Stokes and one Biot
problem per time step. This is a computationally efficient choice, but it introduces
a splitting error. To avoid this error, one could use the iterative version of the
algorithm, which at every time tn+1 iterates over the Stokes and Biot sub-problems
until convergence. This is a fixed point iteration. Let k be the iteration index.
For ease of notation, in the description of the algorithm we will drop the time step
index from the variables in the iterations, i.e., we will write φk+1 instead of the
more rigorous (and bulkier) φn+1,k+1. Finally, let dtϕ

k+1 := (ϕk+1 − ϕn)/Δt and
dttη

k+1
p := dtdtη

k+1
p = (dtη

k+1
p −dtη

n
p )/Δt. Recalling that dtη

n
p = (ηn

p −ηn−1
p )/Δt

for n ≥ 1, we have dttη
k+1
p = (ηk+1

p − 2ηn
p + ηn−1

p )/Δt2, while for n = 0 we have

dttη
k+1
p = ((ηk+1

p − ηn
p )/Δt− us,0)/Δt.

For simplicity we present the method in the case γBJS = 0. At every time tn+1,
assume that un

f , p
n
p , η

n
p , μ

n
n, and μn

τ are known.

Algorithm 2. Set μ0
n = μn

n and μ0
τ = μn

τ . The following steps are performed at
iteration k + 1, k ≥ 0:

(1) Stokes problem: Find (uk+1
f , pk+1

f ) such that

(
ρfdtu

k+1
f ,vf

)
Ωf

+ af (u
k+1
f ,vf ) + bf (vf , p

k+1
f )

+ γf 〈uk+1
f · nf ,vf · nf 〉Γfp

+ γf 〈uk+1
f · τ f ,vf · τ f 〉Γfp

= (ff ,vf )Ωf
+ 〈μk

n,vf · nf 〉Γfp
+ 〈μk

τ ,vf · τ f 〉Γfp
(6.1)

− bf (u
k+1
f , wf ) = (qf , wf )Ωf

.(6.2)

(2) Biot problem: Find (ηk+1
p ,uk+1

p , pk+1
p ) such that

(
ρpdttη

k+1
p , ξp

)
Ωp

+ adp(u
k+1
p ,vp) + aep(η

k+1
p , ξp) + αbp(ξp, p

k+1
p )

+ bp(vp, p
k+1
p ) + γp〈(uk+1

p + dtη
k+1
p ) · np, (vp + ξp) · np〉Γfp

+ γp〈dtηk+1
p · τ p, ξp · τ p〉Γfp

= (fp, ξp)Ωp
+
〈
μk
n − (γp + γf )u

k+1
f · nf , (vp + ξp) · np

〉
Γfp

+
〈
μk
τ − (γp + γf )u

k+1
f · τ f , ξp · τ p

〉
Γfp

,(6.3)

s0(dtp
k+1
p , wp)Ωp

− αbp(dtη
k+1
p , wp)− bp(u

k+1
p , wp) = (qp, wp)Ωp

.(6.4)
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(3) Update:

〈μk+1
n , χn〉Γfp

=
〈
μk
n − (γf + γp)

(
(dtη

k+1
p + uk+1

p ) · np + uk+1
f · nf

)
, χn

〉
Γfp

,

(6.5a)

〈μk+1
τ , χτ 〉Γfp

=
〈
μk
τ − (γf + γp)

(
dtη

k+1
p · τ p + uk+1

f · τ f

)
, χτ

〉
Γfp

.

(6.5b)

(4) Check the stopping criterion, e.g.

(6.6)
∥∥∥uk+1

f · nf − uk
f · nf

∥∥∥
L2(Γfp)

< ε,

where ε is a given stopping tolerance. If not satisfied, repeat steps (1)–(4).

If satisfied, set un+1
f = uk+1

f , pn+1
f = pk+1

f , ηn+1
p = ηk+1

p , un+1
p = uk+1

p ,

pn+1
p = pk+1

p , and μn+1 = μk+1.

We next show that Algorithm 2 converges.

Theorem 6.1. For Algorithm 2 with γf = γp = γ it holds that the sequence
(uk

f , p
k
f ,η

k
p,u

k
p, p

k
p,μ

k) converges in Vf ×Wf ×Xp ×Vp ×Wp × (L2(Γfp))
2.

Proof. Let uk+1
f := uk+1

f − uk
f for k ≥ 1 with a similar notation for the rest of the

variables. Subtracting (6.1)–(6.5) for k + 1 and k results in the equations in the
Stokes region

1

Δt

(
ρfu

k+1
f ,vf

)
Ωf

+ af (u
k+1
f ,vf ) + bf (vf , p

k+1
f )

+ γ〈uk+1
f · nf ,vf · nf 〉Γfp

+ γ〈uk+1
f · τ f ,vf · τ f 〉Γfp

= 〈μk
n,vf · nf 〉Γfp

+ 〈μk
τ ,vf · τ f 〉Γfp

(6.7)

− bf (u
k+1
f , wf ) = 0,(6.8)

and in the Biot region

1

Δt2
(
ρpη

k+1
p , ξp

)
Ωp

+ adp(u
k+1
p ,vp) + aep(η

k+1
p , ξp)

+ bp(vp, p
k+1
p ) + αbp(ξp, p

k+1
p )

+ γ
〈(

uk+1
p +

1

Δt
ηk+1
p

)
· np, (vp + ξp) · np

〉
Γfp

+ γ
〈 1

Δt
ηk+1
p · τ p, ξp · τ p

〉
Γfp

= 〈μk
n − 2γuk+1

f · nf , (vp + ξp) · np〉Γfp
+ 〈μk

τ − 2γuk+1
f · τ f , ξp · τ p〉Γfp

,(6.9)

1

Δt
(s0p

k+1
p , wp)Ωp

− αbp

( 1

Δt
ηk+1
p , wp

)
− bp(u

k+1
p , wp) = 0,(6.10)

as well as the updates

〈μk+1
n , χn〉Γfp

=
〈
μk
n − 2γ

(( 1

Δt
ηk+1
p + uk+1

p

)
· np + uk+1

f · nf

)
, χn

〉
Γfp

,(6.11a)

〈μk+1
τ , χτ 〉Γfp

=
〈
μk
τ − 2γ

( 1

Δt
ηk+1
p · τ p + uk+1

f · τ f

)
, χτ

〉
Γfp

.(6.11b)
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Taking vf = uk+1
f , wf = pk+1

f , vp = uk+1
p , wp = pk+1

p , and ξp = 1
Δtη

k+1
p and

following the argument in the proof of Theorem 4.1, we obtain for any integers
1 ≤ M1 < M2,

M2−1∑
k=M1

(
ρf
Δt

(uk+1
f ,uk+1

f )Ωf
+

ρp
Δt2

(ηk+1
p ,ηk+1

p )Ωp
+

1

Δt
aep(η

k+1
p ,ηk+1

p )

+
s0
Δt

(pk+1
p , pk+1

p )Ωp
) + af (u

k+1
f ,uk+1

f ) + adp(u
k+1
p ,uk+1

p )

)
+

1

4γ

∫
Γfp

(μM2+1
n )2 +

1

4γ

∫
Γfp

(μM2+1
τ )2

≤ 1

4γ

∫
Γfp

(μM1
n )2 +

1

4γ

∫
Γfp

(μM1
τ )2,

(6.12)

which implies that the series

∞∑
k=1

( ρf
Δt

(uk+1
f ,uk+1

f )Ωf
+ af (u

k+1
f ,uk+1

f )
)
is conver-

gent. Therefore uk+1
f → 0 in Vf . Using the inf-sup condition (4.14), we conclude

from (6.7) that

(6.13) ‖pk+1
f ‖L2(Γfp) ≤ C‖uk+1

f ‖H1(Ωf ),

therefore pkf → 0 inWf . In addition, sinceΛh = Vf,h|Γfp
, we can take vf = Ef,hμ

k

in (6.7), where Ef,h is the discrete Stokes extension utilized in (4.19), obtaining

(6.14) ‖μk‖L2(Γfp) ≤ Ch−1/2(‖uk+1
f ‖H1(Ωf ) + ‖pk+1

f ‖L2(Ωf )),

where we used the inverse inequality ‖μk‖H1/2(Γfp) ≤ Ch−1/2‖μk‖L2(Γfp). From

(6.13) and (6.14) we conclude that μk → 0 in (L2(Γfp))
2. Now, taking M1 → ∞ in

(6.12) and using (4.9) and the triangle inequality, we obtain that, as M1, M2 → ∞,

‖uM2

f − uM1

f ‖H1(Ωf ) + ‖ηM2
p − ηM1

p ‖H1(Ωp)

+ ‖uM2
p − uM1

p ‖L2(Ωp) + ‖pM2
p − pM1

p ‖L2(Ωp) → 0,

hence (uk
f ,η

k
p,u

k
p, p

k
p) is a Cauchy sequence in Vf ×Xp × (L2(Ωp))

d ×Wp. Bounds

(6.13) and (6.14) now imply that (pkf ,μ
k) is a Cauchy sequence in Wf ×(L2(Γfp))

2.

Finally, taking wp = ∇ · uk+1
p in (6.10) implies

‖∇ · uk+1
p ‖L2(Ωp) ≤

C

Δt
(‖pk+1

p ‖L2(Ωp) + ‖ηk+1‖H1(Ωp)),

while the discrete trace-inverse inequality gives

‖uk+1
p · np‖L2(Γfp) ≤ Ch−1/2‖uk+1

p ‖L2(Ωp).

Therefore uk
p is a Cauchy sequence in Vp. The assertion of the theorem follows

from the completeness of the spaces. �

Remark 6.1. The proof of Theorem 6.1 establishes convergence of the iterative algo-
rithm, but does not provide convergence rate. We refer the reader to [4,5,21], where
such rates are established for related Robin-Robin schemes applied to simplified FSI
or FPSI models using fixed point iteration arguments. In the numerical section we
present a test on the effect of the Robin parameter on the rate of convergence.
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6.1. Monolithic scheme. Let us denote the limit functions in Theorem 6.1 as
(ũk

f , p̃
k
f , η̃

k
p, ũ

k
p, p̃

k
p, μ̃

k). Taking k → ∞ in (6.1)–(6.5) and using the convergence
established in Theorem 6.1, we conclude that the limit functions satisfy the following
fully coupled fully implicit scheme: find

(ũn+1
f , p̃n+1

f ) ∈ Vf,h ×Wf,h, (η̃
n+1
p , ũn+1

p , p̃n+1
p ) ∈ Xp,h ×Vp,h ×Wp,h,

and μ̃n+1
n ∈ Λh such that for all (vf , wf ) ∈ Vf,h × Wf,h, (ξp,vp, wp) ∈ Xp,h ×

Vp,h ×Wp,h, and χ ∈ Λh,(
ρfdtũ

n+1
f ,vf

)
Ωf

+ af (ũ
n+1
f ,vf ) + bf (vf , p̃

n+1
f )

+ γ〈ũn+1
f · nf ,vf · nf 〉Γfp

+ γ〈ũn+1
f · τ f ,vf · τ f 〉Γfp

= (ff ,vf )Ωf
+ 〈μ̃n+1

n ,vf · nf 〉Γfp
+ 〈μ̃n+1

τ ,vf · τ f 〉Γfp
,(6.15)

− bf (ũ
n+1
f , wf ) = (qf , wf )Ωf

,(6.16) (
ρpdttη̃

n+1
p , ξp

)
Ωp

+ aep(η̃
n+1
p , ξp) + adp(ũ

n+1
p ,vp)

+ αbp(ξp, p̃
n+1
p ) + bp(vp, p̃

n+1
p )

+ γ〈(ũn+1
p + dtη̃

n+1
p ) · np, (vp + ξp) · np〉Γfp

+ γ〈dtη̃n+1
p · τ p, ξp · τ p〉Γfp

= (fp, ξp)Ωp
+ 〈μ̃n+1

n − 2γũn+1
f · nf , (vp + ξp) · np〉Γfp

+
〈
μ̃n+1
τ − 2γũn+1

f · τ f , ξp · τ p

〉
Γfp

,(6.17)

s0(dtp̃
n+1
p , wp)Ωp

− αbp(dtη̃
n+1
p , wp)− bp(ũ

n+1
p , wp) = (qp, wp)Ωp

,(6.18)

〈(dtη̃n+1
p + ũn+1

p ) · np + ũn+1
f · nf , χn〉Γfp

= 0,(6.19)

〈dtη̃n+1
p · τ p + ũn+1

f · τ f , χτ 〉Γfp
= 0.(6.20)

We note that the Robin data variables μ̃n+1
n and μ̃n+1

τ play the role of Lagrange
multipliers to impose weakly the velocity continuity conditions (2.8) and (2.10)
in (6.19)–(6.20). In addition, since the Stokes solution satisfies weakly the Robin
boundary conditions

γũn+1
f · nf + (σ̃n+1

f nf ) · nf = μ̃n+1
n and γũn+1

f · τ f + (σ̃n+1
f nf ) · τ f = μ̃n+1

τ

and the Biot solution satisfies weakly the Robin boundary conditions

γ(ũn+1
p + dtη̃

n+1
p ) · np + (σ̃n+1

p np) · np = μ̃n+1
n − 2γũn+1

f · nf ,

γdtη̃
n+1
p · τ p + (σ̃n+1

p np) · τ p = μ̃n+1
τ − 2γũn+1

f · τ f ,

γ(ũn+1
p + dtη̃

n+1
p ) · np − p̃n+1

p = μ̃n+1
n − 2γũn+1

f · nf ,

it follows that conditions

σ̃n+1
f nf + σ̃n+1

p np = 0 and − (σ̃n+1
f nf ) · nf = p̃n+1

p

are satisfied weakly, i.e., the balance of stress conditions (2.9) hold weakly for the
solution of the method.

To the best of our knowledge, the fully implicit scheme (6.15)–(6.20) has not
been studied in the literature. The argument above proves existence of a solution.
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We next establish uniqueness and stability. To this end, we define a modified energy
term

Ên =
ρf
2
‖ũn

f ‖2L2(Ωf )
+

ρp
2
‖dtη̃n

p‖2L2(Ωp)
+

1

2
‖η̃n

p‖2e +
s0
2
‖p̃np‖2L2(Ωp)

,

which is the energy term En from (4.6) without the terms involving μ̃n
n and μ̃n

τ .
Again for simplicity we let ff = fp = qf = qp = 0.

Theorem 6.2. The method (6.15)–(6.20) has a unique solution satisfying the en-
ergy equality

(6.21) ÊN +Δt
N∑

n=1

Dn +
N∑

n=1

Sn ≤ Ê0.

Proof. We take vf = ũn+1
f , wf = p̃n+1

f , vp = ũn+1
p , wp = p̃n+1

p , ξp = dtη̃
n+1
p ,

χn = μ̃n+1
n , and χτ = μ̃n+1

τ in (6.15)–(6.20) and sum the equations. In a way
similar to (4.11) and (4.13), we obtain(

ρfdtũ
n+1
f , ũn+1

f

)
Ωf

+ af (ũ
n+1
f , ũn+1

f ) +
(
ρpdttη̃

n+1
p , dtη̃

n+1
p

)
Ωp

+ aep(η̃
n+1
p , dtη̃

n+1
p ) + adp(ũ

n+1
p , ũn+1

p ) + s0(dtp̃
n+1
p , p̃n+1

p )Ωp
≤ 0.

We remark that all terms involving μ̃n+1
n and μ̃n+1

τ cancel out. Then (6.21) follows
by using (4.2), multiplying by Δt, and summing over n.

The energy balance (6.21) implies uniqueness for ũn
f , η̃

n
p , ũ

n
p , and p̃np . Uniqueness

for p̃nf and μ̃n follows from the argument used to establish that pkf → 0 and μk → 0
in the proof of Theorem 6.1. �

Remark 6.2. As noted above, the monolithic scheme (6.15)–(6.20) is new. The
scheme warrants further studies. Since the Lagrange multiplier is based on Robin
transmission conditions, the method may be more robust in the regime of large
added-mass-effect when the system is preconditioned with sub-domain solves com-
pared to monolithic schemes based on Dirichlet or Neumann transmission condi-
tions. This is a possible topic of future research.

7. Numerical results

This section presents results from two numerical tests in two dimensions. We
start with checking the convergence rates in time for the Robin-Robin algorithm
(3.11)–(3.17), its iterative version (6.1)–(6.6), and the monolithic scheme (6.15)–
(6.20). The convergence test is also used to assess the robustness of the Robin-Robin
algorithm in both the non-iterative and iterative versions to changes in the value
of the Robin parameter. Next, we consider a simplified blood flow problem to
illustrate the behavior of the methods for a computationally challenging choice of
physical parameters.

All results have been obtained with FreeFem++ [32], using triangular grids. For
spatial discretization we use the following finite element spaces: the Taylor-Hood
continuous P2 − P1 elements for the velocity–pressure pair in the Stokes problem,
the Raviart-Thomas RT 1 −Pdc

1 elements for the Darcy velocity and pressure, and
continuous P2 elements for the structure displacement and the trace function μ.
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7.1. Example 1: Convergence test. In order to check the convergence rates
in time, we consider an analytical solution in domains Ωf = (0, 1) × (0, 1) and
Ωp = (0, 1)× (−1, 0) with interface Γfp = (0, 1)× {0} over time interval (0, 1]. We

take ΓD
f = (0, 1)× {1}, ΓN

f = {0} × (0, 1) ∪ {1} × (0, 1), ΓD
p = Γ̃D

p = (0, 1)× {−1},
and ΓN

p = Γ̃N
p = {0} × (−1, 0) ∪ {1} × (−1, 0). See the computational domain

in Figure 2(left) and the analytical solution in Figure 2(right). We note that the
analytical solution satisfies the appropriate interface conditions on Γfp.

ΓN
f ΓN

f

ΓD
f

Γfp

ΓN
p ΓN

p

ΓD
p

Ωf

Ωp

uf = π cos(πt)

(
−3x+ cos( y)

y + 1

)
,

pf = exp(t) sin(πx) cos
(πy

2

)
+2π cos(πt),

pp = exp(t) sin(πx) cos
(πy

2

)
,

up = − 1

μf
K∇pp,

ηp = sin(πt)

(
−3x+ cos(y)

y + 1

)
.

Figure 2. Example 1, left: computational domain and mesh;
right: analytical solution

The model parameters are set as follows: μf = 1, ρf = 1, ρp = 1, μp = 1,
λp = 1, s0 = 1, K = I2×2, α = 1, γBJS = 0, γf = γp = γ = 1. The forcing
terms ff , qf , fp and qp are found by plugging the analytical solution in (2.3)–(2.7).
Similarly, appropriate data for the Dirichlet and Neumann boundary conditions
and initial conditions are derived from the exact solution.

The structured mesh used in the convergence study, obtained by setting the mesh
size h to 1/32, is shown in Figure 2(left). The choice of the mesh size is so that the
spatial discretization error does not affect the convergence rates in time.

For the time convergence study, we consider the time interval [0, 1] and a sequence
of progressively smaller time steps: Δt = 0.2, 0.1, 0.05, 0.025, 0.0125. Table 1 re-
ports numerical errors for the Stokes, Biot, and auxiliary interface variables in the
space-time norms bounded in the analysis, as well as the corresponding convergence
rates in time for the non-iterative Robin-Robin algorithm. We note that the error
for the interface variable μ is reported in the L2(Γfp) norm, which is stronger,

but easier to compute than the H−1/2(Γfp) norm that appears in the analysis.
As the time step gets smaller, we observe that the rate of convergence approaches
one (i.e., the expected rate) for all variables. Furthermore, Tables 2 and 3 report
the errors and rates for the iterative Robin-Robin algorithm and the monolithic
scheme, respectively. We also present the results from the iterative Robin-Robin
algorithm with a fixed number of 10 iterations at each time step in Table 4. First
order convergence in time is observed for all variables for all methods. To ease the
comparison for selected variables, namely uf , up, ηp, Figure 3 (first row) shows
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Table 1. Example 1, numerical errors and convergence rates in
time for the non-iterative Robin-Robin algorithm

Δt ‖euf
‖L∞(H1(Ωf )) ‖epf

‖L2(L2(Ωf )) ‖eup
‖L2(H(div;Ωp)) ‖epp

‖L∞(L2(Ωp))

0.2 1.663e+00 Rate 1.706e+00 Rate 1.800e+00 Rate 3.112e-01 Rate

0.1 9.071e-01 0.87 8.999e-01 0.92 1.046e+00 0.78 1.827e-01 0.72

0.05 4.768e-01 0.92 4.640e-01 0.95 5.825e-01 0.84 1.023e-01 0.83

0.025 2.449e-01 0.96 2.360e-01 0.97 3.113e-01 0.90 5.497e-02 0.89

0.0125 1.247e-01 0.97 1.191e-01 0.98 1.617e-01 0.94 2.855e-02 0.94

Δt ‖eηp
‖L∞(H1(Ωp)) ‖e∂tηp

‖L∞(L2(Ωp)) ‖eμ‖L∞(L2(Γfp))

0.2 1.966e+00 Rate 1.578e+00 Rate 2.369e+00 Rate

0.1 1.183e+00 0.73 8.996e-01 0.81 1.311e+00 0.85

0.05 6.675e-01 0.82 4.808e-01 0.90 6.857e-01 0.93

0.025 3.589e-01 0.89 2.491e-01 0.94 3.479e-01 0.97

0.0125 1.868e-01 0.94 1.270e-01 0.97 1.745e-01 0.99

Table 2. Example 1, numerical errors and convergence rates in
time for the iterative Robin-Robin algorithm. The last column
reports the average number of iterations required to satisfy the
stopping criterion (6.6).

Δt ‖euf
‖L∞(H1(Ωf )) ‖epf

‖L2(L2(Ωf )) ‖eup
‖L2(H(div;Ωp)) ‖epp

‖L∞(L2(Ωp))

0.2 1.233e+00 Rate 1.537e+00 Rate 1.730e+00 Rate 2.855e-01 Rate

0.1 6.481e-01 0.92 7.809e-01 0.97 1.005e+00 0.78 1.700e-01 0.74

0.05 3.331e-01 0.96 3.936e-01 0.98 5.602e-01 0.84 9.646e-02 0.81

0.025 1.686e-01 0.98 1.977e-01 0.99 2.998e-01 0.90 5.169e-02 0.90

0.0125 8.473e-02 0.99 9.911e-02 0.99 1.559e-01 0.94 2.686e-02 0.94

Δt ‖eηp
‖L∞(H1(Ωp)) ‖e∂tηp

‖L∞(L2(Ωp)) ‖eμ‖L∞(L2(Γfp))
# iter

0.2 1.520e+00 Rate 1.553e+00 Rate 1.853e+00 Rate 96.60

0.1 8.827e-01 0.78 8.933e-01 0.79 9.848e-01 0.91 89.20

0.05 4.938e-01 0.83 4.803e-01 0.89 5.123e-01 0.94 76.50

0.025 2.659e-01 0.89 2.497e-01 0.94 2.625e-01 0.96 65.45

0.0125 1.388e-01 0.93 1.276e-01 0.96 1.337e-01 0.97 55.10

the convergence plots. We see that, as one would expect, the errors in the itera-
tive Robin-Robin algorithm are indistinguishable from the errors in the monolithic
scheme (identical for the number of digits reported in the tables), while the errors
in the non-iterative Robin-Robin method are slightly larger. We recall that, in
the case of the iterative algorithm, the increased accuracy comes with an increased
computational cost, since every time step requires the solution of multiple Stokes
and Biot problems; see the last column in Table 2 for the average number of iter-
ations required to satisfy the stopping criterion (6.6), with the maximum number
of iterations set to 100. However, we also observe from Table 4 and Figure 3 (first
row) that even not running the iterative scheme to convergence, but only taking
a small number of iterations (10), also gives results very close to the monolithic
scheme.
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Table 3. Example 1, numerical errors and convergence rates in
time for the monolithic scheme

Δt ‖euf
‖L∞(H1(Ωf )) ‖epf

‖L2(L2(Ωf )) ‖eup
‖L2(H(div;Ωp)) ‖epp

‖L∞(L2(Ωp))

0.2 1.233e+00 Rate 1.537e+00 Rate 1.730e+00 Rate 2.855e-01 Rate

0.1 6.481e-01 0.92 7.809e-01 0.97 1.005e+00 0.78 1.700e-01 0.74

0.05 3.331e-01 0.96 3.936e-01 0.98 5.602e-01 0.84 9.646e-02 0.81

0.025 1.686e-01 0.98 1.977e-01 0.99 2.998e-01 0.90 5.169e-02 0.90

0.0125 8.473e-02 0.99 9.911e-02 0.99 1.559e-01 0.94 2.686e-02 0.94

Δt ‖eηp
‖L∞(H1(Ωp)) ‖e∂tηp

‖L∞(L2(Ωp)) ‖eμ‖L∞(L2(Γfp))

0.2 1.520e+00 Rate 1.553e+00 Rate 1.865e+00 Rate

0.1 8.827e-01 0.78 8.933e-01 0.79 9.887e-01 0.91

0.05 4.938e-01 0.83 4.803e-01 0.89 5.130e-01 0.94

0.025 2.659e-01 0.89 2.497e-01 0.94 2.626e-01 0.96

0.0125 1.388e-01 0.93 1.276e-01 0.96 1.337e-01 0.97

Table 4. Example 1, numerical errors and convergence rates in
time for the iterative Robin-Robin algorithm with 10 iterations per
time step

Δt ‖euf
‖L∞(H1(Ωf )) ‖epf

‖L2(L2(Ωf )) ‖eup
‖L2(H(div;Ωp)) ‖epp

‖L∞(L2(Ωp))

0.2 1.240e+00 Rate 1.537e+00 Rate 1.731e+00 Rate 2.862e-01 Rate

0.1 6.491e-01 0.93 7.807e-01 0.97 1.006e+00 0.78 1.704e-01 0.74

0.05 3.325e-01 0.96 3.934e-01 0.98 5.603e-01 0.84 9.659e-02 0.81

0.025 1.676e-01 0.98 1.974e-01 0.99 2.995e-01 0.90 5.162e-02 0.90

0.0125 8.365e-02 1.00 9.866e-02 1.00 1.554e-01 0.94 2.662e-02 0.94

Δt ‖eηp
‖L∞(H1(Ωp)) ‖e∂tηp

‖L∞(L2(Ωp)) ‖eμ‖L∞(L2(Γfp))
# iter

0.2 1.512e+00 Rate 1.553e+00 Rate 1.828e+00 Rate 10.00

0.1 8.877e-01 0.78 8.933e-01 0.79 9.658e-01 0.92 10.00

0.05 4.903e-01 0.83 4.803e-01 0.89 5.020e-01 0.94 10.00

0.025 2.637e-01 0.89 2.497e-01 0.94 2.583e-01 0.95 10.00

0.0125 1.373e-01 0.94 1.276e-01 0.96 1.324e-01 0.96 10.00

7.1.1. Robustness to the Robin parameter γ. In this subsection, we study the ro-
bustness of the Robin-Robin schemes to the value of γ, which is obviously a
key parameter. All the parameters are set as previously, with the exception of
γ = γf = γp, which will take different values. In practice, it is reasonable to set
γ so that the magnitudes of the velocity and stress terms in the Robin combina-
tion are comparable. While these can be inferred from the physical data and/or
preliminary simulation results, some degree of robustness to γ is desirable.

First, we consider the non-iterative Robin-Robin scheme and the effect of γ on
the numerical errors. Figure 4 shows the convergence plots for uf , up, ηp for
γ = 0.001, 0.01, 0.1, 1, 10, 100. For all variables, we observe first order convergence
for γ = 0.01, 0.1, 1, 10, with the rates approaching first order as Δt → 0 for γ = 100.
However, the convergence rate deteriorates for γ = 0.001. The different variables
exhibit somewhat different sensitivity to γ, with uf being slightly more sensitive
than up and ηp. The general trend is that the errors are similar for γ ∈ [0.01, 10]
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Figure 3. Example 1, convergence plots for fluid velocity uf

(left), Darcy velocity up (center), and displacement ηp (right) for
γ = 1 (first row), γ = 0.001 (second row), and γ = 100 (third row)
computed by the non-iterative and iterative Robin-Robin methods
and the monolithic method

and the errors increase if γ is too small or too large. We note that for the range γ ∈
[0.01, 10] the magnitudes of the velocity and stress terms in the Robin combination
are comparable. The increase in errors for extreme values of γ can be explained
from the theoretical estimate, which has terms proportional to both γ2, cf. (5.38)
and 1/γ2, cf. (5.35). We conjecture that the reason for the reduced convergence
rate with γ = 0.001 is that velocity continuity is not properly enforced by the
Robin transmission conditions. We finally note that both the converged iterative
scheme and the iterative scheme with 10 iterations give smaller errors and recover
first order convergence in time for the extreme values γ = 0.001, 100, see the second
and third rows in Figure 3. Moreover, in Figure 5 we present the convergence plots
for uf , up, ηp with γ = 0.001, 0.01, 0.1, 1, 10, 100 for the iterative method with 10
iterations and note that the sensitivity to γ is significantly reduced compared to
the non-iterative method.

Next, we consider the iterative scheme and the effect of γ on the number of iter-
ations. We take the same values of γ used above, i.e., γ = 0.001, 0.01, 0.1, 1, 10, 100.
Table 5 lists the average number of iterations needed for convergence for each γ
value. We observe that, for a given value of γ, the average number of iterations
required to satisfy the stopping criterion (6.6) per time step decreases as the time
step size is reduced. On the other hand, for a given time step the average number
of iterations varies considerably with γ, with γ = 0.1 being the “optimal” value.
This value is in the range [0.01, 10] of values for γ that resulted in smaller time
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Figure 4. Example 1, convergence plots for fluid velocity uf

(left), Darcy velocity up (right) and displacement ηp (bottom) for
the non-iterative Robin-Robin algorithm for different values of γ

Figure 5. Example 1, convergence plots for fluid velocity uf

(left), Darcy velocity up (right) and displacement ηp (bottom) for
the iterative Robin-Robin algorithm with 10 iterations per time
step for different values of γ

discretization errors for the non-iterative scheme. We conclude that values of γ in
the “optimal” range, where the magnitudes of the velocity and stress terms in the
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Table 5. Example 1, average number of iterations required to
satisfy the stopping criterion (6.6) per time step of the iterative
Robin-Robin scheme for different values of γ

Δt γ = 0.001 γ = 0.01 γ = 0.1 γ = 1 γ = 10 γ = 100
0.2 100.00 94.40 26.80 96.60 49.00 99.80
0.1 100.00 86.70 20.20 89.20 43.70 93.90
0.05 100.00 54.20 17.05 76.50 39.20 67.65
0.025 76.20 23.675 12.60 65.45 34.97 46.525
0.0125 31.45 13.3375 8.72 55.10 30.96 32.325

Robin combination are comparable, result in both smaller errors in the non-iterative
scheme and faster convergence in the iterative scheme.

7.2. Example 2: Blood flow test. In this example, we test the behavior of
the method for a computationally challenging choice of physical parameters. We
consider a benchmark on modeling blood flow through a section of an idealized
artery. The Stokes equations model the blood flow in the lumen of the artery and
the Biot equations model the arterial wall. Let R and L be the radius and length
of the artery, respectively. The fluid domain is Ωf = (0, L)× (−R,R). Its top and
bottom boundaries are in contact with the poroelastic arterial wall of thickness rp.
See the computational domain in Figure 6(left).

Γin
f Γout

f

Γext
p

Γext
p�

Γin
p

�Γin
p

�Γout
p

�
Γout
p

Ωf

�

�
Ωp

Figure 6. Example 2, left: computational domain and mesh;
right: zoomed-in view of the mesh at the fluid-structure interface

Since this is a 2D problem representing a slice of a 3D problem, we add an extra
term to (2.5) to account for the fact that the 2D structure is actually part of a 3D
cylindrical tube:

ρp ∂ttηp −∇ · σp + β ηp = fp in Ωp × (0, T ],

where ρp is the fluid density in the poroelastic region. The additional term (i.e., the
last term at the left-hand side) comes from the axially symmetric two dimensional
formulation, accounting for the recoil due to the circumferential strain [4]. The
body force terms ff and fp and external source qp are set to zero.

Let Γin
f = {(0, y)| − R < y < R} and Γout

f = {(L, y)| − R < y < R} be the inlet

and outlet boundaries of the fluid domain, respectively. Following [35, 39, 46], we
prescribe the normal stress at both inlet and outlet:
(7.1)
σf n

in
f = −pin(t)nf , on Γin

f × (0, T ]; σf n
out
f = 0, on Γout

f × (0, T ],
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where nin
f and nout

f are the respective outward unit normals and

(7.2) pin(t) =

⎧⎪⎨⎪⎩
Pmax

2

(
1− cos

( 2πt

Tmax

))
, if t ≤ Tmax;

0 , if t > Tmax,

with Pmax = 13, 334 dyn/cm2 and Tmax = 0.003 s. Flow distribution and pressure
field are often unknown, they are common in blood flow models. In a system in rest
state, this inlet boundary condition generates a pressure pulse that travels through
the fluid and poroelastic structure domains. We set the end of the time interval of
interest to T = 0.021 s to avoid the pressure pulse reaching the outlet boundary.

With similar notation, we denote with Γin
p = {(0, y)|−R−rp < y < R or R <

y < R+ rp} and Γout
p = {(L, y)| −R− rp < y < R or R < y < R+ rp} the inlet

and outlet boundaries of the poroelastic structure, respectively. We assume that
the poroelastic structure is fixed at the inlet and outlet boundaries:

(7.3) ηp = 0, on Γin
p ∪ Γout

p × (0, T ],

and for the Darcy velocity we impose the following drained boundary condition:

(7.4) up = 0, on Γin
p ∪ Γout

p × (0, T ].

Let Γext
p = {(x, y)|0 < x < L, y = −R − rp or y = R + rp} be the external

structure boundary. Following [46], therein we impose:

(σenp) · np = 0, on Γext
p × (0, T ],

ηp · τ p = 0, on Γext
p × (0, T ],

pp = 0, on Γext
p × (0, T ].(7.5)

To save computational time, we halve the domain in Figure 6(left) along the
horizontal symmetry axis, denoted with Γsym

f , and impose the following symmetry
conditions therein:

uf · nf = 0, on Γsym
f × (0, T ],

(σfnf ) · τ f = 0, on Γsym
f × (0, T ].(7.6)

The geometric and physical parameters for this test are summarized in Table 6.
The physical parameters are chosen within the range of physical values for arterial
blood flow.

Remark 7.1. The physical parameters in Table 6 present several computational
challenges. The closeness of the fluid density ρf and poroelastic wall density ρp
may lead to the so-called added-mass-effect, which causes stability and conver-
gence issues for classical Neumann-Dirichlet methods [5, 21]. The small values of
permeability K and storativity s0 may lead to poroelastic locking. The high stiff-
ness of the arterial wall due to large Lamé parameters λp and μp results in large
stress along the interface and affects the choice of the Robin parameter γ.

The computational mesh is shown in Figure 6(left), with a zoomed-in view
around the fluid-structure interface in Figure 6(right). The time step is set to
Δt = 10−4 s. Regarding the choice of the Robin parameter γ, the O(106) values
of λp and β indicate that the stress is several orders of magnitude larger than the
velocity, suggesting a large value of γ. With estimated magnitudes O(1) for the
interface velocity and O(103) for the interface stress, obtained from a preliminary

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



34 A. DALAL, R. DURST, A. QUAINI, AND I. YOTOV

Table 6. Example 2, geometric and physical parameters

Parameter Symbol Units Reference value
Radius R cm 0.5
Length L cm 6

Poroelastic wall thickness rp cm 0.1

Poroelastic wall density ρp g/cm3 1.1

Fluid density ρf g/cm
3

1.0
Dyn. viscosity μf g/cm-s 0.035

Spring coeff. β dyn/cm
4

4× 106

Mass storativity s0 cm2/dyn 10−3

Permeability K cm2 diag(1, 1)× 10−6

Lamé coeff. μp dyn/cm
2

5.575× 105

Lamé coeff. λp dyn/cm
2

1.7× 106

BJS coeff. αBJS 1
Biot-Willis constant α 1

computation, we set γf = γp = γ = 1000 in order to balance the two terms in the
Robin combination. We later test the robustness of the non-iterative method for
different values of γ.

Figure 7 shows the fluid pressure pf and Darcy pressure pp in their corresponding
domains computed by the Robin-Robin scheme in the non-iterative version and the
monolithic scheme at three different times. We clearly see the propagation of the
pressure wave and an excellent qualitative match in the pressures computed by the
two methods. Figure 8 shows the velocity fields uf and up computed by the same
two schemes at the same times used in Figure 7. Again, we see a great qualitative
match in the solutions computed by the two methods. The faint lines that can been
seen along the horizontal symmetry line in the plots in Figures 7 and 8 are due to
the fact that we have solved the problem on half of the domain and mirrored the
results in Paraview to show the entire vessel.

To further compare the solutions given by the different methods, Figure 9 dis-
plays the fluid pressure, vertical fluid velocity, vertical Darcy velocity, and vertical
structure displacement along the interface computed at different times by the non-
iterative and iterative Robin-Robin methods, and the monolithic method. We see
that the curves given by the iterative Robin-Robin method and the monolithic
method overlap. There is a slight difference with the curves given by the non-
iterative Robin-Robin method, which becomes less noticeable as time passes. It
seems that initially the lack of iterations in the Robin-Robin method slows down
the wave. Overall, we conclude that the non-iterative Robin-Robin method provides
accuracy comparable to the other two methods.

Finally, we test the robustness of the non-iterative Robin-Robin method to the
Robin parameter γ. Figure 10 shows the solution along the interface for γ =
10, 100, 500, 1000, 2000. The curves for γ = 100, 500, 1000 are very similar and
the curves for γ = 2000 deviate from them slightly. The curves for γ = 10 are
significantly different. As in the previous example, we conclude that there is a range
of values of γ, for which the two terms in the Robin combination are of comparable
magnitudes, that produce accurate results. Values outside of this range may result
in reduction in accuracy, especially values of γ that are too small.
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t=0.007

t=0.014

t=0.021

Figure 7. Example 2, fluid and Darcy pressure computed by the
non-iterative Robin-Robin scheme (top) and the monolithic scheme
(bottom) at times t = 0.007, 0.014, 0.021 s (from top to bottom)

8. Conclusions

We developed an iterative and a non-iterative splitting method for the Stokes-
Biot model based on Robin-Robin transmission conditions. The methods utilize an
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t=0.007

t=0.014

t=0.021

Figure 8. Example 2, fluid and Darcy velocity computed by the
non-iterative Robin-Robin scheme (top) and the monolithic scheme
(bottom) at times t = 0.007, 0.014, 0.021 s (from top to bottom).
The arrows represent the velocity vectors and the color represents
the velocity magnitudes.

auxiliary interface variable that models the Robin data. It is used to handle properly
the insufficient regularity of the normal stress on the interface. With a suitable
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Figure 9. Example 2, fluid pressure (first row), vertical fluid ve-
locity (second row), vertical Darcy velocity (third row), vertical
structure displacement (fourth row) along the interface computed
by the Robin-Robin method in the non-iterative and iterative ver-
sions, and the monolithic method at times t = 0.007, 0.014, 0.021 s
(from left to right)

choice of negative norm for this variable, we established unconditional stability
and first order convergence in time for the non-iterative scheme. To the best of our
knowledge, this is the first such result in the literature in a general setting for Robin-
Robin methods for both fluid-structure interaction and fluid-poroelastic structure
interaction. We further studied the iterative version of the method and established
convergence to a new monolithic scheme. We presented two sets of numerical
experiments to illustrate the behavior of the methods. In the first example, based
on a given analytical solution, we verified the first order time discretization rates
and the convergence of the iterative scheme. We also studied the robustness to the
Robin parameter γ. For extreme values of γ (too small or too large), for which
the accuracy of the non-iterative method deteriorates, we found that employing
just a small number of iterations helps to recover optimal rates of convergence.
The second example, based on a blood flow modeling benchmark, illustrated the
applicability of the methods for computationally challenging physical parameters
in the regimes of added-mass-effect and poroelastic locking.
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Figure 10. Example 2, fluid pressure (first row), vertical fluid
velocity (second row), vertical Darcy velocity (third row), vertical
structure displacement (fourth row) along the interface computed
by the Robin-Robin method in the non-iterative version at times
t = 0.007, 0.014, 0.021 s (from left to right) for different values of γ
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