In this example, we will take the model from Figure 1 and actually add the kinetics. We will then add 4 synapses whose conductances and whose onsets can be individually set (although they will all have the same time courses). The object of this little exercise is to explore thresholds and timing of synapses. The file is called trcomp4.ode and you should integrate it at least for 80 msec. I have used alpha functions for the synapses since there is no post-synaptic cell and these fire only once. The sodium and potassium dynamics are those of Traub's cortical cell model. The parameters you will vary are called gsyn1,gsyn2,gsynb,gsyns which are the conductances for the two apical dendrite compartments, the basal dendrite compartment, and the soma compartment. The other parameters of interest are ts,tb,t1,t2 which are the onset times of the 4 synapses. The voltages are v, va1,va2,vb for the soma, the two apical dendrites, and the basal dendrite. I have chosen the coupling between the compartments for you for the purposes of this exercise. Here are some things to do:
# traub sodium and potassium kinetics and 3 compartments with synapses # v va1,va2,vb v'=-(gna*h*m^3*(v-ena)+gk*n^4*(v-ek)+gl*(v-el)+gas*(v-va1)+gbs*(v-vb)+\ alphas(t)*(v-vsyn))/c va1'=-(gl*(va1-el)+g21*(va1-va2)+gsa*(va1-v)+alpha1(t)*(va1-vsyn))/c va2'=-(gl*(va2-el)+g12*(va2-va1)+alpha2(t)*(va2-vsyn))/c vb'=-(gl*(vb-el)+gsb*(vb-v)+alphab(t)*(vb-vsyn))/c m'=am(v)*(1-m)-bm(v)*m h'=ah(v)*(1-h)-bh(v)*h n'=an(v)*(1-n)-bn(v)*n init v=-67,va1=-67,va2=-67,vb=-67,m=0,n=0,h=1 am(v)=.32*(54+v)/(1-exp(-(v+54)/4)) bm(v)=.28*(v+27)/(exp((v+27)/5)-1) ah(v)=.128*exp(-(50+v)/18) bh(v)=4/(1+exp(-(v+27)/5)) an(v)=.032*(v+52)/(1-exp(-(v+52)/5)) bn(v)=.5*exp(-(57+v)/40) par ek=-100,ena=50,el=-67 par gl=.1,gk=80,gna=100 par c=1,i=0 par gsyns=0,gsynb=0,gsyn1=0,gsyn2=0,vsyn=0 par ts=5,tb=5,t1=5,t2=5 par tau_s=5 par g12=2,g21=1,gsa=.5,gas=2,gbs=2,gsb=.5 alpha(t)=t*exp(-t/tau_s)/(tau_s^2) alpha1(t)=gsyn1*alpha(max(t-t1,0)) alpha2(t)=gsyn2*alpha(max(t-t2,0)) alphab(t)=gsynb*alpha(max(t-tb,0)) alphas(t)=gsyns*alpha(max(t-ts,0)) @ dt=.25,meth=qualrk,total=80,xhi=80,ylo=-80,yhi=25 done