# One fast persistent calcium channel # Here is the equation dv/dt=(i+gl*(vl-v)+gca*minf(v)*(vca-v))/c #and the initial condition V(0)=-60 # and the calcium current aux ica=gca*minf(v)*(v-vca) aux il=gl*(v-vl) # and the parameters param vl=-60,vca=120 param i=0,gl=2,gca=4,c=20 param v1=-1.2,v2=18 # and the functions minf(v)=.5*(1+tanh((v-v1)/v2)) done
# nnet1.ode da/dt = (-a+w*f(a)+i)/tau f(a)=1/(1+exp(-beta*(a-theta))) par beta=2,theta=1,i=0,tau=1,w=1 done
# PIR Model with GABA_A and GABA_B synapses p gca=1,vk=-90,fh=2,vca=120 p gl=.1,vl=-70,i=0 p gsyna=0,gsynb=0,vsyna=-85,vsynb=-90,tvsyn=-40 p fka=2,rka=.08 ph(v)=1/(1+exp((v+79)/5)) ps(v)= 1/(1+exp(-(v+65)/7.8)) tauh(v)= ph(v)*exp((v+162.3)/17.8)+20 # v'= gl*(vl-v)+gca*(vca-v)*h*ps(v)^3+i h'= (ph(v)-h)*fh/tauh(v) # # GABA A synapse sa'= fka*ssyn*(1-sa)-rka*sa # # GABA B synapse tb'= 5*ssyn*(1-tb)-.007*tb sb'= .03*tb*(1-sb)-.005*sb # ssyn= 1/(1+exp(-(v+40)/2)) doneReturn to tutorial