home
   ::: about
   ::: news
   ::: links
   ::: giving
   ::: contact

events
   ::: calendar
   ::: lunchtime
   ::: annual lecture series
   ::: conferences

people
   ::: visiting fellows
   ::: postdoc fellows
   ::: resident fellows
   ::: associates

joining
   ::: visiting fellowships
   ::: postdoc fellowships
   ::: senior fellowships
   ::: resident fellowships
   ::: associateships

being here
   ::: visiting
   ::: the last donut
   ::: photo album


::: center home >> events >> lunchtime >> 2008-09 >> abstracts

Tuesday, 3 Febuary 2009
Deductively Definable Logics of Induction
John D. Norton, University of Pittsburgh, HPS
12:05 pm, 817R Cathedral of Learning

::: photos

Abstract: What if, like me, you don't think that the probability calculus is the One, True Logic of Induction? Then you want to know what other logics are possible. Here I map out a large class of inductive logics that originate in the idea that the inductive support B affords A, that is "[A|B]," is defined in terms of the deductive relations among propositions. I demonstrate some very general properties for these logics. In large algebras of propositions, for example, inductive independence is generic in all of them. A no-go result forces all the logics to supplement the deductive relations among propositions with intrinsically inductive structures.

 
Revised 4/28/09 - Copyright 2009   

 

4/28/09