Welcome to the BA Sociology Statistical Matrix! Advancement in academia typically depends upon Scientific publishing. The more you publish, the better the first job, the higher the raise, and the faster the promotion. Sadly only 8% of publications come from developing countries, despite the fact that 27% of the scientists live in developing countries and 80% of the scientists. 
In almost all disciplines in Science students are required to learn about statistics. However, statistics is a difficult topic to learn and learning it in a second language makes it doubly difficult. A primary reason for this is Stataphobia which is the fear of research design and statistics, and not having access to people who can help. Stataphobia makes it most difficult to learn about statistics. Eighty percent of all rejected articles are due to poor research methods.
Much of what we use across disciplines is the result of the building of research methods in the area of Sociology. We have therefore built a 
BA(Bibliotheca Alexandrina) Sociology Statistical Matrix! Research Methods Library of Alexandria (RMLA) for Sociology.
The components of the 
BA Sociology Statistical include:

1.    Sociology Specific Methods:  This is a collection of lectures presenting Sociology specific research methods, including Quantitative and Qualitative research methods, Social networking, Culture and Ethics, etc.  For each area there are multiple lectures by different faculty to learn.

2.    The General Research methods matrix.  If a student has a question about hypothesis testing they have 5 lectures by different faculty to learn from (below):
 

Agriculture Statistics Matrix   Anthropology Statistics Matrix   Statistics Matrix in Arabic   Statistics Matrix in English   Farsi Statistics Matrix  Japanese Statistics Matrix   Psychology Statistics Matrix   Russian Statistics Matrix   Sociology Statistics Matrix

The first column of the Matrix has been left empty; this allows for individual adaptation of the Matrix, where a lecturer may insert their own lecture materials (video, powerpoint, etc.). Enjoy!

 
                   
Add your own lectures here!                     ↓                 ↓   Developer Curtis Tilves under the direction of Malcolm Elliot, Faina Linkov, Eric Marler, Francois Sauer, Ismail Serageldin, Eugene Shubnikov, Ronald LaPorte and Supercourse and Library of Alexandria teams. Developers of Matrices.

 

 
  Bibliotheca  Alexandrina Sociology Statistical Matrix  
 

Khan Academy Channel: Statistics playlist

Brandon Foltz 

Statslectures

Statisticsfun

OnlineStatBook.com

 

Khan Academy (khanacademy.org) is a non-profit organization which utilizes a computerized blackboard to illustrate each step of a problem. "Our mission to provide a world-class education for anyone, anywhere."

Brandon Foltz has a masters in Education and a passion for sharing knowledge. "My videos are full-length lessons...so grab some coffee, tea, lassi, Apokat, sbiten', soo chunkwa...or whatever sounds tasty and relaxing." 

These series of YouTube videos are brought to you by StatisticsLectures.com. "We focus on creating short, applied content with an emphasis on the logic behind various statistical methods."

David Longstreet from MyBookSucks.com expertly takes you through several statistical concepts.   "The goal is to use 21st century tools to deliver education and learning for statistics."

David Lane is the principal developer of this resource although many others have made substantial contributions. This site was developed at Rice University, University of Houston-Clear Lake, and Tufts University.

 

  Statistics: The Average 12:35     Central Tendency: Mean, Median, and Mode 3:47 How to Calculate Mean and Standard Deviation 2:12 Median and Mean
                  Mean and Median Demonstration
  Statistics: Sample vs. Population Mean 6:42 Population vs Sample Data 26:47 Arithmetic Mean for Samples and Populations 2:46     What is Central Tendency?
                  Measures of Central Tendency
                  Balance Scale Simulation
                  Additional Measures of Central Tendency
                  Comparing Measures of Central Tendency
      Point Estimators 14:48         Introduction to Estimation
                  Characteristics of Estimators
  Statistics: Variance of a Population 12:23 Variance and its Sampling Distribution 27:20 Variance and Standard Deviation of a Population 5:01 Why are Degress of Freedom (n-1) Used in Variance and Standard Deviation 7:05 Measures of Variability
                  Variability Simulation
                  Variation Simulation
                  Effects of Linear Transformations
                  Variance Sum Law I
  Statistics: Sample Variance 11:18     Variance and Standard Deviation of a Sample 5:46 How to Calculate Standard Deviation, Mean, Variance Statistics, Excel 4:35 Degrees of Freedom
  Statistics: Standard Deviation 13:07 Standard Deviation and NFL Field Goals - Part 1/3 20:05 Variance and Standard Deviation of Discrete Random Variables 2:51 Standard Deviation and Variance (Explaining Formulas) 5:31 Absolute Deviation Simulation
      Standard Deviation and NFL Field Goals - Part 2/3 26:26     How to Calculate Standard Deviation and Variance 5:05 Squared Deviation Simulation
      Standard Deviation and NFL Field Goals - Part 3/3 6:45     Calculating Standard Deviation Using Excel 6:01  
  Statistics: Alternate Variance Formulas 12:17              
  Introduction to Random Variables 12:04 Random Variable Basics 11:59 Types of Variables 3:34     Variables
      Discrete Random Variable Basics 12:46 Independent and Dependent Variables 1:28      
      Discrete Random Variable Probabilities 19:42 Discrete and Continuous Random Variables 2:17      
      Discrete Random Variable Variance 26:16          
  Probability Density Functions 10:02 Uniform Probability Distribution 30:31 Frequency Distributions and Cumulative Frequency Distributions 1:35     Distributions
          Discrete Probability Distributions 1:56     Shapes of Distributions
                  Comparing Distributions
  Binomial Distribution 1 12:16 The Binomial Distribution 36:50 Binomial Distribution 4:25 Binomial Distribution Probability Coins 7:52 Binomial Distribution
  Binomial Distribution 2 11:05 Binomial Mean and Standard Deviation 21:41 Mean and Standard Deviation of Binomial Random Variables 1:39     Binomial Demonstration
  Binomial Distribution 3 13:27 Simple Binomial Sales Quota Analysis 20:41         Normal Approximation to the Binomial
  Binomial Distribution 4 10:46 Binomially Distributed Mac OS X User Rate 32:43         Multinomial Distribution
      Binomially Distributed Factory Accident Data 20:42          
  Expected Value: E(X) 14:53 Expected Value 21:18 Mean and Expected Value of Discrete Random Variables 1:51      
  Expected Value of a Binomial Distribution 16:56              
  Poisson Process 1 11:01 Introduction to the Poisson Distribution 31:14 Poisson Distribution/Process 3:18     Poisson Distribution
  Poisson Process 2 12:42 Poisson Practice Problems 28:03 Mean and Standard Deviation of Poisson Random Variables 2:01      
      Poisson Graphs in Excel 17:52          
  Law of Large Numbers 9:00     The Law of Large Numbers 1:30      
  Normal Distribution Excel Exercise 26:04 Is My Data Normal? 25:31          
  Introduction to the Normal Distribution 26:24 A Tour of the Normal Distribution 26:58         Introduction to Normal Distributions
  Normal Distribution Problems: Qualitative Sense of Normal Distributions 10:53 Sampling Distributions 18:48          
  Normal Distribution Problems: Z-score 7:48 Understanding Z-scores 22:57 Z-scores (Part One) 3:03 An Introduction to Z-scores 3:53 History of the Normal Distribution
          Z-scores (Part Two) 4:01 How to Calculate Z-scores 3:51 Areas Under Normal Distributions
              How to Calculate Normalized Z-score 7:15 Varieties Demonstration
              How to Look Up Normalized Tables Z-scores Standard Normal Curve Table 7:34 Standard Normal Distribution
              How to use Normalized Tables Z-score (Standard Table) 5:03 Normal Approximation Demonstration
  Normal Distribution Problems: Empirical Rule 10:25     The Normal Curve and Empirical Rule 3:18      
  Exercise: Standard Normal Distribution and the Empirical 8:16              
  More Empirical Rule and Z-score Practice 5:57     Exra Z-score Problems 4:54 An Example of how to Z-score and Hypothesis Testing 3:59  
  Central Limit Theorem 9:49     The Central Limit Theorem 1:17     Central Limit Theorem Demonstration
  Sampling Distribution of the Sample Mean  10:52 Sample Mean Proximity to Population Mean 38:59 Distribution of the Sampling Mean 4:49     Introduction to Sampling Distributions
  Sampling Distribution of the Sample Mean 2 13:20             Sampling Distribution Demonstration
  Sampling Distribution Example Problem 14:28             Sampling Size Demonstration
                  Sampling Distribution of the Mean
  Standard Error of the Mean 15:15 Standard Error of the Mean 32:03 Parameters, Statistics, and Sampling Error 2:20      
  Confidence Interval 1 14:03         How to use Excel to Calculate Confidence Interval 4:59 Confidence Intervals Introduction
  Mean and Variance of Bernoulli Distribution Example 8:20              
  Bernoulli Distribution Mean and Variance Formulas 6:59              
  Margin of Error 1 15:03         How to Calculate Confidence Intervals and Margin of Error 6:44  
  Margin of Error 2 10:05         How to Calculate Sample Size and Margin of Error 6:46  
              How to Calculate Margin of Error and Standard Deviation 6:42  
              How to Calculate Margin of Error Confidence Interval for a Population Proportion 8:04  
  Confidence Interval Example 18:36             Confidence Interval Demonstration
  Small Sample Size and Confidence Intervals 11:11              
  Hypothesis Testing and p-values 11:27 Introduction to Hypothesis Formulation 21:09 Null and Alternative Hypotheses 2:42 P-values, Z-scores, Alpha, Critical Values 5:37 Significance Testing
      Null and Alternative Hypotheses-Part 1 22:17 User Submitted Question: Alpha Levels 2:26     Introduction to Hypothesis Testing
      Null and Alternative Hypotheses-Part 2 18:10         Interpreting Significant Results
                  Interpreting Non-Significant Results
                  Steps in Hypothesis Testing
                  Significance Testing and Confidence Intervals
                  Misconceptions in Hypothesis Testing
                  Sampling Distribution of p
  One-tailed and Two-tailed Tests 6:34     One-Tailed and Two-Tailed Tests 2:06 How to Calculate One Tail and Two Tail Tests for Hypothesis Testing 4:34 One- and Two-Tailed Tests
  Z-statistics vs. T-statistics 6:40 To Z or to T, That is the Question 38:17          
  Type I Errors 3:24 Type I and Type II Errors-Part 1 24:55 Type I and Type II Errors 4:25 Learn to Understand Hypothesis Testing for Type I and Type II Errors 7:01 Type I and Type II Errors
      Type I and Type II Errors-Part 2 24:04         Robustness Simulation
      Visualizing Type I and Type II Error 37:43          
      Calculating Type II Error-Part 1 23:39          
      Calculating Type II Error-Part 2 20:57          
      Controlling Type II Error Using Sample Size 38:10          
  Small Sample Hypothesis Test 9:04 Single Sample Hypothesis Z-test-Part 1 19:09 One Sample Z-test 6:17     Testing a Single Mean
      Single Sample Hypothesis Z-test-Part 2 15:17 One Sample Z-test for Proportions 6:08     Confidence Interval on the Mean
      Single Sample Hypothesis Z-test-Part 3 16:11          
      Single Sample Hypothesis T-test-Part 1 25:41 One Sample T-test 4:49 How to Calculate T Distributions 5:47 t Distribution
      Single Sample Hypothesis T-test-Part 2 28:08     How to Calculate T Statistics Test Between the Means of Related Groups (Dependent Means) 11:10 t Distribution Demonstration
              How to Calculate T Statistics of Different Groups 10:22  
  T-statistic Confidence Interval 11:47     Confidence Intervals for Independent Samples T-test 2:54      
          Confidence Intervals for Dependent Samples T-test 2:33      
  Large Sample Proportion Hypothesis Testing 14:31              
  Variance of Differences of Random Variables 10:47 Two Populations, Z-test with Hypothesis 26:37         Difference Between Two Means (Independent Groups)
      Two Populations, T-test with Hypothesis 33:58          
      Two Populations, Matched Sample T-test 34:28          
      F-ratio Test for Two Equal Variances  18:03          
      F-ratio test Practice for Two Equal Variances 12:54          
  Difference of Sample Means Distribution 12:18             Difference Between Means
                  Difference Between Two Means
                  Sampling Distribution of Difference Between Means
  Confidence Interval of Difference of Means 15:49     Confidence Intervals about the Mean, Population Standard Deviation Unknown 5:15      
  Clarification of Confidence Interval of Difference of Means 2:42              
  Hypothesis Test for Difference of Means 10:07              
  Comparing Population Proportions 1 10:47 Confindence Intervals, Population Deviation Known 44:07 Sample Proportions 3:09     Proportion
  Comparing Population Proportions 2 10:01 Confidence Intervals, Population Deviation Unknown-Part 1 27:15 Z-test for Proportions, Two Samples 4:05     Proportions
  Hypothesis Test Comparing Population Proportions 16:13 Confidence Intervals, Population Deviation Unknown-Part 2 20:57 Confidence Intervals for Population Proportions 4:18     Proportion of Variance Explained
          Confidence Intervals for the Difference of Two Proportions 1:58      
  Squared Error of Regression Line 6:47             Introduction to Linear Regression
  Proof (Part 1) Minimizing Squared Error to Regression Line 10:35 Simple Linear Regression (Part 1), The Very Basics 22:56 Linear Regression 4:31 An Introduction to Linear Regression Analysis 2:14 Linear Fit Demonstration 
  Proof (Part 2) Minimizing Squared Error to Regression Line 9:54 Simple Linear Regression (Part 2), Algebra, Equations, and Patterns 24:57     An Introduction to Regression Analysis 4:41 Partitioning the Sums of Squares
  Proof (Part 3) Minimizing Squared Error to Regression Line 10:54 Simple Linear Regression (Part 3), The Least Squares Method 28:37     How to Calculate Regression Equation Using Excel Statistics 6:18 Standard Error of the Estimate
  Proof (Part 4) Minimizing Squared Error to Regression Line 4:18 Simple Linear Regression (Part 4), Fit and the Coefficient of Determination 26:10     How to Calculate Regression Equation, R-square, Using Excel Statistics 6:52 Inferential Statistics for b and r
  Regression Line Example 9:27         How to Calculate Linear Regression Using Least Squares Method 8:29 Influential Observations
  R-squared or Coefficient of Determination 12:41         Standard Error of the Estimate Used in Regression Analysis (Mean Square Error) 3:41 Regression Toward the Mean
  Second Regression Example 9:15              
  Calculating R-squared 9:45         How to Calculate R Squared Using Regression Analysis 7:41  
  Covariance and the Regression Line 15:08 Understanding Covariance 26:23          
      The Covariance Matrix 17:32          
  Chi-square Distribution Introduction 10:23 Introduction to Chi-square Test 37:39 Chi-square Test for Goodness of Fit 4:01 How to Calculate Chi-square Goodness of Fit (One Way) 9:33 Chi Square Distribution
  Pearson's Chi-square Test (Goodness of Fit) 11:48 Quick Chi-square in SPSS 18:26 Chi-square Test for Independence 3:54 How to Calculate Chi-square Test for Independence (Two-Way) 12:59 One-Way Tables (Testing Goodness of Fit)
  Contingency Table Chi-square Test 17:38 Chi-square in Excel using College Enrollment Data 41:35         Testing Distribution Demonstration
                  Contingency Tables
                  2x2 Simulation
  ANOVA 1: Calculating SST (Total Sum of Squares) 7:39 ANOVA, a Visual Introduction 24:18 Introduction to ANOVA 7:16 How to Calculate and Understand ANOVA F-test 14:30 Introduction to ANOVA
  ANOVA 2: Calculating SSW and SSB (Total Sum of Squares Within and Between) 13:20 One-way ANOVA (Part 1), A Visual Guide 24:14 One-Way ANOVA 6:51 How to Read F Distribution Table Used in ANOVA 5:52 Analysis of Variance Designs
  ANOVA 3: Hypothesis Test with F-statistic 10:14 One-way ANOVA (Part 2), Understanding the Calculation 35:22 Effect Size for One-Way ANOVA 2:03 How to Calculate ANOVA (Plugging Numbers Into Equation) 9:57 One-Factor ANOVA (Between Subjects)
      Two-Way ANOVA without Replication (Part 1), A Visual Guide 37:36 Post-Hoc Tests for One-Way ANOVA 6:10     One-way ANOVA Demonstration
      Two-Way ANOVA without Replication (Part 2), The Calculation 43:02 Repeated-Measures ANOVA 9:03     Multi-Factor Between-Subjects Designs
      Two-way ANOVA with Replication (Part 1), An Introduction 34:15 Factorial ANOVA, Two Independent Factors 9:10 How to Calculate a Two Way ANOVA (Factorial Analysis) 18:02 Unequal Sample Sizes
      Two-way ANOVA with Replication (Part 2A), Interactions 18:28 Factorial ANOVA, Two Dependent Factors 13:38 How to Interpret the Results of a Two Way ANOVA 17:41 Tests Supplementing ANOVA
      Two-way ANOVA with Replication (Part 2B), Marginal Means Graphs 28:53 Factorial ANOVA, Two Mixed Factors 11:08 Introduction to Two Way ANOVA 8:01 Within-Subjects ANOVA
                  Power of Within-Subjects Designs Demonstration
  Correlation and Causality 10:45 Understanding Correlation 27:06 Correlation vs. Causation 2:19     Correlation
          Pearson's r Correlation 4:03     Causation
          Hypothesis Testing with Pearson's r 2:58     Introduction to Bivariate Data
          Spearman Correlation 3:13     Values of the Pearson Correlation
                  Guessing Correlations
                  Properties of Pearson's r
                  Computing Pearson's r
                  Range Restriction Demonstration
                  Variance Sum Law II
                  Sampling Distribution of Pearson's r
                  All Pairwise Comparisons Among Means
                  Specific Comparisons (Independent Groups)
                  Difference Between Two Means (Correlated Pairs)
                  Correlated t Demonstration
                  Specific Comparisons (Correlated Observations)
                  Pairwise Comparisons (Correlated Observations)
      Multiple Regression (Part 1), The Very Basics 20:26         Introduction to Multiple Regression
      Multiple Regression (Part 2), Preparation 24:05          
      Multiple Regression (Part 3A), Evaluating Basic Models 25:17          
      Multiple Regression (Part 3B), Evaluating Basic Models 26:22          
      Multiple Regression (Part 4), Dummy Variables 20:59          
      Multiple Regression (Part 5A), Two Categorical Variables 18:34          
      Multiple Regression (Part 5B), Two Categorical Variables 18:03          
      Logistic Regression, An Introduction 11:26          
      Logistic Regression Probability, Odds and Odds ratio 13:03          
      Logistic Regression, Logit and Regression Equation 16:58          
      Logistic Regression, Estimating the Probability 11:22          
      Logistic Regression, Odds Ratio for Any Interval 24:47          
      Logistic Regression in Excel/Google Sheets, PC/Mac 10:10          
      Permutations vs. Combinations 21:00         Hypergeometric Distribution
      Combinations 20:54 Combinations 2:50      
      Permutations 19:04 Permutations 3:04      
      Combinations-Losing Your Marbles 28:43          
      Combinations-Dogs of the Dow 28:50          
      Combinations-Nearly Normal 23:45          
      Combinations-Under the Curve 29:22          
      Joint and Marginal Probabilities 21:20         Basic Concepts in Probability
      Combinations-Playing with a Full Deck 29:35          
      Estimating Sample Size Requirements 37:42 Calculating Required Sample Size to Estimate Population Mean 2:19 How to Calculate Sample Size Proportions 2:44 Introduction to Power
          Calculating Required Sample Size to Estimate Population Proportions 2:45 How to Calculate Sample Size 2:46 Example Calculations (Power)
          Power 6:23     Power Demonstration 1
                  Power Demonstration 2
                  Factors Affecting Power
          Effect Size 2:26 How to Calculate Cohen d Effect Size 4:50  
          Effect Size for Dependent Samples t-Test 2:26      
          Effect Size for Independent Samples t-Test 2:25      
      Confidence Intervals for the Variance 40:41          
      Hypothesis Test for the Variance 26:53          
              How to Calculate Weighted Mean and Weighted Average 2:17  
          The Basics: Descriptive and Inferential Statistics 2:51     Descriptive Statistics
                  Inferential Statistics
          Sampling Methods 3:56     Sampling Simulation
          Variable Measurement Scales 2:43     Measurement
                  Basics of Data Collection
                  Levels of Measurement
                  Measurement Demonstration
          Bar Graphs and Pie Charts 2:13     Bar Charts
                  Graphing Qualitative Variables
          Histograms and Stem & Leaf Plots 5:35     Stem and Leaf Displays
          Probability Histograms 1:24     Histograms
          Percentiles and Quartiles 3:37     Percentiles
          The Five Number Summary, Interquartile Range (IQR), and Boxplots 3:31     Box Plots
          Coordinate (Cartesian) Planes 1:19     Box Plot Demo
          Quadrants 1:04     Quantitative Variables
          Scatter Plots 1:21     Frequency Polygons
                  Line Graphs
                  Dot Plots
                  Quantile-Quantile (q-q) Plots
                  Contour Plots
                  3D Plots
          The Effects of Outliers 3:08     Log Transformations
          Skewness 1:36     Tukey's Ladder of Powers
                  Box-Cox Transformations
          Statistical vs. Practical Significance 2:02     What are Statistics?
                  Importance of Statistics
          Independent and Dependent Samples 2:17      
                  Benefits of Distribution-Free Tests
                  Randomization Tests: Two Conditions
                  Randomization Tests: Two or More Conditions
                  Randomization Tests: Association (Pearson's r)
                  Randomization Tests: Contingency Tables (Fisher's Exact Test)
          Mann-Whitney U-Test 4:36     Rank Sum Randomization: Two Conditions (Mann-Whitney U, Wilcoxon Rank Sum)
          Wilcoxon Signed-Ranks Test 3:48      
          The Kruskal-Wallis Test 5:20     Rank Randomization: Two or More Conditions (Kruskal-Wallis)
          The Friedman Test 3:27      
                  Rank Randomization for Association (Spearman's p)
          Student's T-distribution 2:56      
          Independent Samples T-test 6:53      
          Dependent Samples T-test 4:59      
          Confidence Intervals about the Mean, Population Standard Deviation Known 4:30      
                  Summation
                  Linear Transformations
                  Logarithms
                  Scientific Method
                  Experimental Designs
                  Sampling Bias
                  Statistical Literacy (Introduction)
                  Exercises (Introduction)
                  Statistical Literacy (Research Design)
                  Exercises (Research Design)
                  Statistical Literacy (Normal Distribution)
                  Exercises (Normal Distribution)
                  Statistical Literacy (Hypothesis Testing)
                  Exercises (Hypothesis Testing)
                  Statistical Literacy (Tests of Means)
                  Exercises (Tests of Means)
                  Statistical Literacy (Power)
                  Exercises (Power)
                  Statistical Literacy (Regression)
                  Exercises (Regression)
                  Statistical Literacy (Transformations)
                  Exercises (Transformations)
                  Statistical Literacy (ANOVA)
                  Exercises (ANOVA)
                  Statistical Literacy (Chi Square)
                  Exercises (Chi Square)
                  Statistical Literacy (Effect Size)
                  Exercises (Effect Size)
                  Statistical Literacy (Distribution Free Tests)
                  Exercises (Distribution Free Tests)
                  Statistical Literacy (Sampling Distributions)
                  Exercises (Sampling Distributions)
                  Statistical Literacy (Estimation)
                  Exercises (Estimation)
                  Statistical LIteracy (Summarizing Distributions)
                  Exercises (Summarizing Distributions)
                  Statistical Literacy (Describing Bivariate Data)
                  Exercises (Describing Bivariate Data)
                  Statistical Literacy (Graphing Distributions)
                  Exercises (Graphing Distributions)
                  Statistical Literacy (Advanced Graphs)
                  Exercises (Advanced Graphs)
 

Arabic Course by Dr. Serageldin

 

Please use Internet Explorer 10 or older for proper operation of this part

Course also available in HTML, PPT and PDF format in English

 

Quantitative Techniques for Social Science Research. A Course in Ten Lectures by Ismail Serageldin:


Introduction in Arabic


1. Science, Method & Measurement in Arabic


2. Building An Index in Arabic


3. Correlation and Causality in Arabic


4. Probability and Statistics in Arabic


5. Samples and Surveys in Arabic


6. Experimental and Quasi-experimental Designs in Arabic


7. Conceptual Models in Arabic


8. Quantitative Models in Arabic


9. Complexity and Chaos in Arabic


10. Recapitulation - Envoi in Arabic

 

Agriculture RMLA

Other E-Books

BA Arabic RMLA

RMLA Ask the Expert

RMLA Biostatistics Methods

RMLA Books

RMLA Case-Control Studies

RMLA Clinical trials

RMLA Epidemiologic Methods

RMLA Mentoring Program

RMLA Participating Journals

RMLA Planning Research

RMLA Prospective Studies

RMLA Publishing

RMLA Regional Centers

RMLA Sample Size

RMLA Statistical Methods

RMLA Statistical soft ware

RMLA Survey Methods

RMLA Survey Portal

RMLA Apps for Academics

RMLA Overview of Systems Approach to Research

Search inside of Supercourse and lectures in HTML and PPT format

Donate to Supercourse