Marek J. Druzdzel: List of Publications

(Click on the title for the PDF version of the paper)

Journals:

  • Marek J. Druzdzel and Jayant R. Kalagnanam. Performance budget planning: The case of a research university. To appear in Computational Economics, 2020.
  • Alind Gupta, Justin J. Slater, Devon Boyne, Nicholas Mitsakakis, Audrey Beliveau, Marek J. Druzdzel, Darren R. Brenner, Selena Hussain and Paul Arora. Probabilistic graphical modeling for estimating risk of coronary artery disease: Applications of a flexible machine-learning method. Medical Decision Making, 39(8):1032-1044, November 2019.
  • Paul Arora, Devon Boyne, Justin J. Slater, Alind Gupta, Darren R. Brenner and Marek J. Druzdzel. Bayesian networks for risk prediction using real-world data: A tool for precision medicine. Value in Health, 22(4): 439-445, March 2019.
  • Nur H. Orak, Mitchell J. Small and Marek J. Druzdzel. Bayesian network-based framework for exposure-response study design and interpretation. Environmental Health, 18(23):1-12, 2019.
  • Agnieszka Onisko, Marek J. Druzdzel and R. Marshall Austin. Application of Bayesian network modeling to pathology informatics. Diagnostic Cytopathology, 47(1):41-47, January 2019.
  • Jidapa Kraisangka and Marek J. Druzdzel. Corrigendum to "A Bayesian network interpretation of the Cox's Proportional Hazard model" [International Journal of Approximate Reasoning (IJAR)], 103:195-211, December 2018]. 111:51-52, March 2019.
  • Jidapa Kraisangka and Marek J. Druzdzel. A Bayesian network interpretation of the Cox's Proportional Hazard model. International Journal of Approximate Reasoning (IJAR), 103:195-211, December 2018.
  • Oliver Lindhiem, Charles B. Bennett, Rinad S. Beidas, Damion J. Grasso, Dara J. Sakolsky and Marek J. Druzdzel. Development and preliminary feasibility testing of a decision support tool for childhood anxiety treatment. Cognitive and Behavioral Practice, 25(2):199-207, May 2018.
  • Mario A. Cypko, Matthaeus Stoehr, Marcin Kozniewski, Marek J. Druzdzel, Andreas Dietz, Leonard Berliner and Heinz U. Lemke. Validation workflow for a clinical Bayesian network model in multidisciplinary decision making in head and neck oncology treatment. International Journal of Computer Assisted Radiology and Surgery, 12(11):1959-1970, 2017.
  • Marcin Kozniewski, Mario A. Cypko, Marek J. Druzdzel. How reliable in a measure of model reliability? Bootstrap confidence intervals over validation results. Advances in Computer Science Research, 13:27-41, 2016.
  • Agnieszka Onisko, Marek J. Druzdzel and R. Marshall Austin. How to interpret the results of medical time series data analysis: Classical statistical approaches versus dynamic Bayesian network modeling. Journal of Pathology Informatics, 7:51, 2016.
  • Adam Zagorecki, Anna Lupinska-Dubicka, Mark Voortman and Marek J. Druzdzel. Modeling menstrual cycles using PICI gates in Bayesian network. International Journal of Approximate Reasoning, 70(2016)123-136, 2016.
  • Jidapa Kraisangka and Marek J. Druzdzel. Making Large Cox's Proportional Hazard Models Tractable in Bayesian Networks. Journal of Machine Learning Research (JMLR): Workshop and Conference Proceedings, Eight International Conference on Probabilistic Graphical Models (PGM 2016), Alessandro Antonucci, Giorgio Corani and Cassio Polpo de Campos (eds.), 52:252-263, 2016.
  • Parot Ratnapinda and Marek J. Druzdzel. Learning discrete Bayesian network parameters from continuous data streams: What is the best strategy? Journal of Applied Logic, 13(4):628-642, Part 2, December 2015.
  • Natasha A. Loghmanpour, Manreet K. Kanwar, Marek J. Druzdzel, Raymond L. Benza, Srinivas Murali and James F. Antaki. A new Bayesian network-based risk stratification model for prediction of short-term and long-term LVAD mortality. ASAIO Journal, 61(3):313-323, May/June 2015.
  • Natasha A. Loghmanpour, Marek J. Druzdzel and James F. Antaki. Cardiac Health Risk Stratification System (CHRiSS): A Bayesian-based decision support system for Left Ventricular Assist Device (LVAD) therapy. PLoS ONE, 9(11):e111264, November 2014.
  • Agnieszka Onisko and Marek J. Druzdzel. Impact of precision of Bayesian networks parameters on accuracy of medical diagnostic systems. Artificial Intelligence in Medicine, 57(3):197-206, March 2013.
  • Adam Zagorecki and Marek J. Druzdzel. Knowledge engineering for Bayesian networks: How common are noisy-MAX distributions in practice? IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(1):186-195, January 2013.
  • Linda C. Santelices, Yajuan Wang, Don Severyn, Marek J. Druzdzel, Robert L. Kormos, James F. Antaki. Development of a hybrid decision support model for optimal ventricular assist device weaning. Annals of Thoracic Surgery, 90:713-720, 2010.
  • R. Marshall Austin, Agnieszka Onisko, Marek J. Druzdzel. The Pittsburgh Cervical Cancer Screening Model: A risk assessment tool. Archives of Pathology and Laboratory Medicine, 134(5):744-750, May 2010.
  • Mark Voortman, Denver H. Dash and Marek J. Druzdzel. Learning causal models that make correct manipulation predictions with time series data. Journal of Machine Learning Research (JMLR) Workshop and Conference Proceedings, Volume 6: Causality: Objectives and Assessment (NIPS 2008), Isabelle Guyon, Dominik Janzing, and Bernhard Scholkopf (eds.), 6:257-266, 2010.
  • Katarzyna Kosciuk and Marek J. Druzdzel. Player modeling using Bayesian networks. Symulacja w Badaniach i Rozwoju, 1(2):151-158, 2010.
  • Tsai-Ching Lu and Marek J. Druzdzel. Interactive construction of graphical decision models based on causal mechanisms. European Journal of Operations Research (EJOR), 199(3):873-882, December 2009.
  • Denver H. Dash and Marek J. Druzdzel. A note on the correctness of the causal ordering algorithm. Artificial Intelligence, 172:1800-1808, 2008.
  • R. Marshall Austin, Agnieszka Onisko and Marek J. Druzdzel. Bayesian network model analysis as a quality control and risk assessment tool in cervical cancer screening. Journal of Lower Genital Tract Disease, 12(2):160-161, 2008.
  • R. Marshall Austin, Agnieszka Onisko and Marek J. Druzdzel. The Pittsburgh Cervical Cancer Screening Model. Cancer Cytopathology, 114(S5):345, October 2008.
  • Anna Lupinska-Dubicka and Marek J. Druzdzel. Analyzing Certain Temporal Dependences in Netflix Data. Zeszyty Naukowe Politechniki Bialostockiej, Seria Informatyka, 3:67-82, 2008.
  • Changhe Yuan and Marek J. Druzdzel. Theoretical analysis and practical insights into importance sampling for Bayesian networks. International Journal of Approximate Reasoning, 46(2):320-333, October 2007.
  • Changhe Yuan and Marek J. Druzdzel. Importance sampling algorithms for Bayesian networks: Principles and performance. Mathematical and Computer Modeling, 43(9-10):1189-1207, May 2005.
  • Michael L. Anderson, Thomas Barkovsky, Pauline Berry, Douglas Blank, Timothy Chklovski, Pedro Domingos, Marek J. Druzdzel, Christian Freksa, John Gersh, Mary Hegarty, Tze-Yun Leong, Henry Lieberman, Ric Lowe, Susann Luperfoy, Rada Mihalcea, Lisa Meeden, David P. Miller, Tim Oates, Robert Popp, Daniel Shapiro, Nathan Schurr, Push Singh and John Yen. Reports on the 2005 AAAI Spring Symposium Series. AI Magazine, 26(2):87-92, Summer 2005.
  • Marek J. Druzdzel. Intelligent decision support systems based on SMILE. Software 2.0, 2(February):12-33, 2005.
  • Marek J. Druzdzel and F. Javier Diez. Combining knowledge from different sources in probabilistic models. Journal of Machine Learning Research, 4(July):295-316, 2003.
  • Haiqin Wang, Denver H. Dash and Marek J. Druzdzel. A method for evaluating elicitation schemes for probabilistic models. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 32(1):38-43, February 2002.
  • Michael M. Wagner, Fu-Chiang Tsui, Jeremy U. Espino, Virginia M. Dato, Dean F. Sittig, Richard A. Caruana, Laura F. McGinnis, David W. Deerfield, Marek J. Druzdzel and Douglas B. Fridsma. The emerging science of very early detection of disease outbreaks. Journal of Public Health Management Practice, 7(6):51-59, November 2001.
  • Agnieszka Onisko, Marek J. Druzdzel and Hanna Wasyluk. Learning Bayesian network parameters from small data sets: Application of Noisy-OR gates. International Journal of Approximate Reasoning, 27(2):165-182, 2001.
  • Hanna Wasyluk, Agnieszka Onisko and Marek J. Druzdzel. Support of diagnosis of liver disorders based on a causal Bayesian network model. Medical Science Monitor, 7(Suppl. 1):327-332, May 2001.
  • Marek J. Druzdzel and Hans van Leijen. Causal reversibility in Bayesian networks. Journal of Experimental and Theoretical Artificial Intelligence, 13(1):45-62, 2001.
  • Jian Cheng and Marek J. Druzdzel. AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks. Journal of Artificial Intelligence Research (JAIR), 13:155-188, 2000 (Honorable Mention in the 2005 IJCAI-JAIR Best Paper Prize).
  • Marek J. Druzdzel and Linda C. van der Gaag. Building probabilistic networks: `Where do the numbers come from?' Guest editors' introduction. IEEE Transactions on Knowledge and Data Engineering, 12(4):481-486, 2000.
  • Yan Lin and Marek J. Druzdzel. Relevance-based incremental belief updating in Bayesian networks. International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI), 13(2):285-295, March 1999.
  • Marek J. Druzdzel. Five useful properties of probabilistic knowledge representations from the point of view of intelligent systems. Fundamenta Informaticae, Special Issue on Knowledge Representation and Machine Learning, 30(3-4):241-254, 1997.
  • Marek J. Druzdzel. Decision-support systems in genetic counseling (Open peer commentary on `Information, knowledge, and values in genetic decision making' by Dr. Sue P. Stafford). Technology Studies, 3(2):263-267, 1996.
  • Marek J. Druzdzel. Qualitative verbal explanations in Bayesian belief networks. Artificial Intelligence and Simulation of Behaviour Quarterly, special issue on Bayesian networks, 94:43-54, 1996.
  • Jon F. Merz, Marek J. Druzdzel, and Dennis J. Mazur. Verbal expressions of probability in informed consent litigation. Medical Decision Making, 11(4):273-281, October-December 1991.
  • Major peer reviewed conferences:

  • Jidapa Kraisangka, Marek J. Druzdzel, Lisa C. Lohmueller, Manreet K. Kanwar, James F. Antaki and Raymond L. Benza. Bayesian network vs. Cox's proportional hazard model of PAH risk: A comparison. In: Riano D., Wilk S., ten Teije A. (eds.) Artificial Intelligence in Medicine: 17th Conference on Artificial Intelligence in Medicine, AIME 2019. Lecture Notes in Computer Science, Vol 11526. Springer, Cham, pages 139-149, Poznan, Poland, 26-29 June 2019.
  • Parot Ratnapinda and Marek J. Druzdzel. An Empirical Evaluation of Costs and Benefits of Simplifying Bayesian Networks by RemovingWeak Arcs. In Recent Advances in Artificial Intelligence: Proceedings of the Twenty Seventh International Florida Artificial Intelligence Research Society Conference (FLAIRS-2014), William Eberle, Chutima Boonthum-Denecke (eds.), pages 508-511, Menlo Park, CA: AAAI Press, 2014.
  • Parot Ratnapinda and Marek J. Druzdzel. An empirical comparison of Bayesian network parameter learning algorithms for continuous data streams. In Recent Advances in Artificial Intelligence: Proceedings of the Twenty Sixth International Florida Artificial Intelligence Research Society Conference (FLAIRS-2013) Chutima Boonthum-Denecke and G. Michael Youngblood (eds), pages 627-632, Menlo Park, CA: AAAI Press, 2013.
  • Mark Voortman, Denver H. Dash, Marek J. Druzdzel. Learning why things change: The difference-based causality learner. In Proceedings of the 26th Annual Conference on Uncertainty in Artificial Intelligence (UAI-2010), pages 641-650, AUAI Press, Corvallis, OR, 2010.
  • Mark Voortman and Marek J. Druzdzel. Insensitivity of constraint-based causal discovery algorithms to violations of the assumption of multivariate normality. In Recent Advances in Artificial Intelligence: Proceedings of the Twenty First International Florida Artificial Intelligence Research Society Conference (FLAIRS-2008), David Wilson, H. Chad Lane (eds), pages 690-695, Menlo Park, CA: AAAI Press, 2008.
  • Changhe Yuan and Marek J. Druzdzel. Generalized Evidence Pre-propagated Importance Sampling for Hybrid Bayesian Networks, In Proceedings of the Twenty-Second National Conference on Artificial Intelligence (AAAI-07), pages 1296-1302, Vancouver, British Columbia, Canada, 22-26 July 2007.
  • Changhe Yuan and Marek J. Druzdzel. Improving Importance Sampling by Adaptive Split-Rejection Control in Bayesian Networks, In Proceedings of The 20th Canadian Conference on Artificial Intelligence, pages 332-343, Montreal, Quebec, Canada, 28-30 May 2007.
  • Xiao Xun Sun, Marek J. Druzdzel and Changhe Yuan. Dynamic weighting A* search-based MAP algorithm for Bayesian networks. In Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07), pages 2385-2390, 2007.
  • Adam Zagorecki and Marek J. Druzdzel. Knowledge engineering for Bayesian networks: How common are noisy-MAX distributions in practice?. In Proceedings of the Seventeenth European Conference on Artificial Intelligence (ECAI-06), G. Brewka, S. Coradeschi, A. Perini & P. Traverso (eds.), pages 482-489, Amsterdam: IOS Press, 2006.
  • Adam Zagorecki, Mark Voortman and Marek J. Druzdzel. Decomposing local probability distributions in Bayesian networks for improved inference and parameter learning. In Recent Advances in Artificial Intelligence: Proceedings of the Nineteenth International Florida Artificial Intelligence Research Society Conference (FLAIRS-2006), Geoff Sutcliffe & Randy Goebel (eds), pages 860-865, Menlo Park, CA: AAAI Press, 2006.
  • Changhe Yuan and Marek J. Druzdzel. Importance sampling in Bayesian networks: An influence-based approximation strategy for importance functions. In Proceedings of the 21st Annual Conference on Uncertainty in Artificial Intelligence (UAI-05), pages 650-657, AUAI Press, Corvallis, OR, 2005.
  • Changhe Yuan and Marek J. Druzdzel. How heavy should the tails be?. In Proceedings of the Eighteenth International Florida Artificial Intelligence Research Society Conference (FLAIRS-2005), Ingrid Russell & Zdrawko Markov (eds.), Menlo Park, CA: AAA Press, pages 799-804, 2005.
  • Changhe Yuan, Tsai-Ching Lu and Marek J. Druzdzel. Annealed MAP. In Proceedings of the 20th Annual Conference on Uncertainty in Artificial Intelligence (UAI-04), pages 628-635, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 2004.
  • Adam Zagorecki and Marek J. Druzdzel. An empirical study of probability elicitation under Noisy-OR assumption. In Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference (FLAIRS-2004), Valerie Barr & Zdrawko Markov (eds), pages 880-885, Menlo Park, CA: AAA Press, 2004.
  • Denver H. Dash and Marek J. Druzdzel. Robust independence testing for constraint-based learning of causal structure. In Proceedings of the 19th Annual Conference on Uncertainty in Artificial Intelligence (UAI-03), pages 167-174, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 2003.
  • Changhe Yuan and Marek J. Druzdzel. An importance sampling algorithm based on evidence pre-propagation. In Proceedings of the 19th Annual Conference on Uncertainty in Artificial Intelligence (UAI-03), pages 624-631, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 2003.
  • Denver H. Dash and Marek J. Druzdzel. Caveats for causal reasoning with equilibrium models. In Proceedings of the Sixth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU-2001), S. Benferhat, P. Besnard (eds.), Springer Lecture Notes in Computer Science; Lecture Notes in Artificial Intelligence, LNAI 2143, Berlin Heidelberg: Springer-Verlag, pages 192-203, 2001.
  • Tsai-Ching Lu and Marek J. Druzdzel. Supporting changes in structure in causal model construction. In Proceedings of the Sixth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU-2001), S. Benferhat, P. Besnard (eds.), Springer Lecture Notes in Computer Science; Lecture Notes in Artificial Intelligence, LNAI 2143, Berlin Heidelberg: Springer-Verlag, pages 204-215, 2001.
  • Haiqin Wang, Denver H. Dash and Marek J. Druzdzel. A method for evaluating elicitation schemes for probabilities. In Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference (FLAIRS-2001), Ingrid Russell & John Kolen (eds), pages 607-612, Menlo Park, CA: AAAI Press, 2001.
  • Agnieszka Onisko, Peter Lucas and Marek J. Druzdzel. Comparison of rule-based and Bayesian network approaches in medical diagnostic systems. In Proceedings of the Eighth Annual Conference on Artificial Intelligence in Medicine (AIME-2001), S. Quaglini, P. Barahona, S. Andreassen (eds.) Artificial Intelligence in Medicine, Lecture Notes in Computer Science Subseries, Springer Verlag, pages 281-292, 2001.
  • Jian Cheng and Marek J. Druzdzel. Confidence inference in Bayesian networks. In Proceedings of the Seventeenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-2001), pages 75-82, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 2001.
  • Jian Cheng and Marek J. Druzdzel. Computational investigation of low-discrepancy sequences in simulation algorithms for Bayesian networks. In Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-2000), pages 72-81, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 2000.
  • Tsai-Ching Lu, Marek J. Druzdzel and Tze-Yun Leong. Causal mechanism-based model construction. In Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-2000), pages 353-362, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 2000.
  • Haiqin Wang and Marek J. Druzdzel. User interface tools for navigation in conditional probability tables and elicitation of probabilities in Bayesian networks. In Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-2000), pages 617-625, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 2000.
  • Jian Cheng and Marek J. Druzdzel. Latin hypercube sampling in Bayesian networks. In Proceedings of the Thirteenth International Florida Artificial Intelligence Research Society Conference (FLAIRS-2000), Jim Etheredge & Bill Manaris (eds), pages 287-292, Menlo Park, CA: AAAI Press, 2000.
  • Marek J. Druzdzel. GeNIe: A development environment for graphical decision-analytic models. In Proceedings of the 1999 Annual Symposium of the American Medical Informatics Association (AMIA-1999), page 1206, Washington, D.C., November 6-10, 1999.
  • Marek J. Druzdzel, Agnieszka Onisko, Daniel Schwartz, John N. Dowling and Hanna Wasyluk. Knowledge engineering for very large decision-analytic medical models. In Proceedings of the 1999 Annual Symposium of the American Medical Informatics Association (AMIA-1999), page 1049, Washington, D.C., November 6-10, 1999.
  • Marek J. Druzdzel. SMILE: Structural Modeling, Inference, and Learning Engine and GeNIe: A development environment for graphical decision-theoretic models (Intelligent Systems Demonstration). In Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-99), pages 902-903, AAAI Press/The MIT Press, Menlo Park, CA, 1999.
  • Denver H. Dash and Marek J. Druzdzel. A hybrid anytime algorithm for the construction of causal models from sparse data. In Proceedings of the Fifteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-99), pages 142-149, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1999.
  • Yan Lin and Marek J. Druzdzel. Relevance-based sequential evidence processing in Bayesian networks. In Proceedings of the Eleventh International Florida Artificial Intelligence Research Society Conference (FLAIRS-1998), Diane Cook (ed.), pages 446-450, Menlo Park, CA: AAAI Press, 1998.
  • Yan Lin and Marek J. Druzdzel. Computational advantages of relevance reasoning in Bayesian belief networks. In Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-97), pages 342-350, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1997.
  • Cristina Conati, Abigail Gertner, Kurt VanLehn and Marek J. Druzdzel. On-line student modeling for coached problem solving using Bayesian networks. Proceedings of the Sixth International Conference on User Modeling (UM-96), pages 231-242, Springer Verlag: Vienna, New York, June 1997 (UM-97 Best Paper Prize).
  • Marek J. Druzdzel and Linda C. van der Gaag. Elicitation of probabilities for belief networks: Combining qualitative and quantitative information. In Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence (UAI-95), pages 141-148, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1995.
  • Marek J. Druzdzel. Some properties of joint probability distributions. In Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-94), pages 187-194, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1994.
  • Marek J. Druzdzel and Herbert A. Simon. Causality in Bayesian belief networks. In Proceedings of the Ninth Annual Conference on Uncertainty in Artificial Intelligence (UAI-93), pages 3-11, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1993.
  • Marek J. Druzdzel and Max Henrion. Intercausal reasoning with uninstantiated ancestor nodes. In Proceedings of the Ninth Annual Conference on Uncertainty in Artificial Intelligence (UAI-93), pages 317-325, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1993.
  • Marek J. Druzdzel and Max Henrion. Efficient reasoning in qualitative probabilistic networks. In Proceedings of the 11th National Conference on Artificial Intelligence (AAAI-93), pages 548-553, AAAI Press/The MIT Press, Menlo Park, CA, 1993.
  • Max Henrion and Marek J. Druzdzel. Qualitative propagation and scenario-based approaches to explanation of probabilistic reasoning. In Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, pages 10-20, Cambridge, MA, July 1990. Reprinted in Uncertainty in Artificial Intelligence 6, P.P. Bonissone, M. Henrion, L.N. Kanal, and J.F. Lemmer (eds), Machine Intelligence and Pattern Recognition 12, pages 17-32, Elsevier, North Holland: Amsterdam, 1991.
  • Other conferences, workshops, symposia, and book chapters:

  • Agnieszka Onisko and Marek J. Druzdzel. Zastosowanie sieci bayesowskich w medycynie. In Inzynieria biomedyczna: Podstawy i zastosowania, Kurzynski, M., Bobrowski, L., Nowakowski, A., Ruminski, J. (eds.), Informatyka w medycynie, vol. 7, pp. 437-452, 2019.
  • Mateusz Rogowski and Marek J. Druzdzel. Handling imbalanced data with Bayesian networks. In Proceedings of the 8TH Podlasie Conference on Mathematics, page 84, Bialystok, Poland, December 5-8, 2019.
  • Alind Gupta, Justin J. Slater, Nicholas Mitsakakis, Devon Boyne, Marek J. Druzdzel, Darren R. Brenner and Paul Arora. Bayesian networks as an emerging tool for disease risk estimation and clinical decision-making: A real-world example in coronary artery disease. Value in Health, Volume 22:2, page S136, May 2019.
  • Jidapa Kraisangka, Lisa C. Lohmueller, Manreet K. Kanwar, Carol Zhao, Marek J. Druzdzel, James F. Antaki, M.A. Simon and Raymond L. Benza. Derivation of a Bayesian network model from an existing risk score calculator for Pulmonary Arterial Hypertension. The Journal of Heart and Lung Transplantation, 38(4):S487-S488, April 2019.
  • Manreet Kanwar, Lisa C. Lohmueller, Priscilla Correa, Jidapa Kraisangka, Marek J. Druzdzel, James Antaki and Raymond Benza. Application of Bayesian model to predict outcomes in pulmonary arterial hypertension. The Journal of Heart and Lung Transplantation, 37(4)S207.
  • Raymond Benza, Jidapa Kraisangka, Lisa C. Lohmueller, Carol Zhao, Mona Salej, Marek J. Druzdzel, James Antaki, Judith Speck and Manreet Kanwar. Application of a Bayesian network model to predict outcomes in Pulmonary Arterial Hypertension. Chest, 154(4):1061A, 2018.
  • Paul Arora, Devon J. Boyne and Marek J. Druzdzel. Graphical probabilistic models for risk prediction and decision making using real-world data: A developing tool for the era of precision medicine. Value in Health, Volume 21:S10, May 2018.
  • Marcin Kozniewski and Marek J. Druzdzel. Variation intervals for posterior probabilities in Bayesian networks in anticipation of future observations. In Workshop Proceedings of the 9th International Conference on Probabilistic Graphical Models (PGM-2018), pages 25-36, Prague, September 11-14, 2018.
  • Paul Arora, D.J. Boyne and Marek J. Druzdzel. Graphical probabilistic models for risk prediction and decision making using real-world data: A developing tool for the era of precision medicine. In ISPOR (The Professional Society for Health Economics and Outcomes Research) 23rd Annual International Meeting, Real-World Evidence, Digital Health, and the New Landscape for Health Decision Making, Baltimore Convention Center Baltimore, MD, USA, May 19-23, 2018.
  • Dmitriy Babichenko, Marek J. Druzdzel and James McGee. Moving beyond branching: Artificial intelligence in virtual patients. In MedBiquitous Annual Conference 2017, Johns Hopkins University School of Medicine Baltimore, Maryland, USA, June 4-6, 2017.
  • Jidapa Kraisangka, Marek J. Druzdzel and Raymond L. Benza. A Risk Calculator for the Pulmonary Arterial Hypertension Based on a Bayesian Network. In Working Notes of the 13th Annual Bayesian Modeling Applications Workshop (BMAW-2016), pages 1-6, 29 June 2016, New York City, NY.
  • Marek J. Druzdzel. Various Ways of Evaluating Models Learned from Data. In working notes of the 2nd Workshop on Advances in Data Science: International Workshop and Networking Event, Holny Mejera, Poland, 11-14 May 2016.
  • Dmitriy Babichenko, Marek J. Druzdzel, Jonathan Velez, Lorin Grieve, Ravi Patel, Taylor Neal, James McCray, Rae-Djamaal Wallace and Sean Jenkins. Designing the Model Patient: Data-Driven Virtual Patients in Medical Education. In 4th International Conference on Serious Games and Applications for Health (SeGAH 2016), Orlando, FL, May 11-13, 2016.
  • Dmitriy Babichenko and Marek J. Druzdzel. ADMIT - A Web-Based System to Facilitate Graduate Admission. In Proceedings of the iConference 2016, March 20-23, 2016, Philadelphia, PA.
  • Anna Lupinska-Dubicka and Marek J. Druzdzel. Modeling dynamic processes with memory by higher order temporal models. In Foundations of Biomedical Knowledge Representation: Methods and Applications, Arjen Hommersom, Peter J.F. Lucas (eds.), Lecture Notes in Artificial Intelligence, Vol. 9521, pages 219-232, Springer Verlag, 2015.
  • Agnieszka Onisko, Allan Tucker and Marek J. Druzdzel. Prediction and prognosis of health and disease. In Foundations of Biomedical Knowledge Representation: Methods and Applications, Arjen Hommersom, Peter J.F. Lucas (eds.), Lecture Notes in Artificial Intelligence, Vol. 9521, pages 181-188, Springer Verlag, 2015.
  • Adam Zagorecki, Marcin Kozniewski and Marek J. Druzdzel. An approximation of surprise index as a measure of confidence. In Self-Confidence in Autonomous Systems, Papers from the AAAI-2015 Fall Symposium, Nisar Ahmed, Mary Cummings, Christopher Miller (eds.), Technical Report FS-15-05, AAAI Press: Palo Alto, CA, pages 39-41.
  • Maciej Osakowicz and Marek J. Druzdzel. An Experimental Comparison of Methods for Dealing with Missing Values in Data Sets when Learning Bayesian Networks. In working notes of Advances in Data Science: International Workshop and Networking Event, Holny Mejera, Poland, 6-8 May 2015.
  • Martijn de Jongh and Marek J. Druzdzel. Evaluation of Rules for Coping with Insufficient Data in Constraint-based Search Algorithms. In Probabilistic Graphical Models, Linda C. van der Gaag and Ad J. Feelders (eds.), Springer Lecture Notes in Computer Science, Vol. 8754, pages 190-205, Springer International Publishing, 2014.
  • Jidapa Kraisangka and Marek J. Druzdzel. Discrete Bayesian Network Interpretation of the Cox's Proportional Hazard Model. In Probabilistic Graphical Models, Linda C. van der Gaag and Ad J. Feelders (eds.), Springer Lecture Notes in Computer Science, Vol. 8754, pages 238-253, Springer International Publishing, 2014.
  • Krzysztof Nowak and Marek J. Druzdzel. Learning Parameters in Canonical Models using Weighted Least Squares. In Probabilistic Graphical Models, Linda C. van der Gaag and Ad J. Feelders (eds.), Springer Lecture Notes in Computer Science, Vol. 8754, pages 366-381, Springer International Publishing, 2014.
  • Agnieszka Onisko and Marek J. Druzdzel. Impact of Bayesian network model structure on the accuracy of medical diagnostic systems. In Artificial Intelligence and Soft Computing 13th International Conference, ICAISC 2014, Zakopane, Poland, June 1-5, 2014, Proceedings, Part II, Leszek Rutkowski, Marcin Korytkowski, Rafal Scherer, Ryszard Tadeusiewicz, Lotfi A. Zadeh, Jacek M. Zurada (eds.), Springer Lecture Notes in Computer Science; Lecture Notes in Artificial Intelligence, LNAI 8468, Berlin Heidelberg: Springer-Verlag, pages 167-178, 2014.
  • Anna Lupinska-Dubicka and Marek J. Druzdzel. A Comparison of popular fertility awareness methods to a DBN model of the woman's monthly cycle. In Proceedings of The Sixth European Workshop on Probabilistic Graphical Models (PGM 2012), Andres Cano, Manuel Gomez & Thomas D. Nielsen (eds.), pages 219-226, 19-21 September 2012, Granada, Spain.
  • Anna Lupinska-Dubicka and Marek J. Druzdzel. Modeling dynamic systems with memory: What is the right time-order?. In Working Notes of the Eight Bayesian Modeling Applications Workshop, Special Theme: Knowledge Engineering, Part of the Annual Conference on Uncertainty in Artificial Intelligence (UAI-2011), pages 75-82, Barcelona, Spain, 14 July 2011.
  • Parot Ratnapinda and Marek J. Druzdzel. Does Query-Based Diagnostics work?. In Working Notes of the Eight Bayesian Modeling Applications Workshop, Special Theme: Knowledge Engineering, Part of the Annual Conference on Uncertainty in Artificial Intelligence (UAI-2011), pages 117-124, Barcelona, Spain, 14 July 2011.
  • Agnieszka Onisko and Marek J. Druzdzel. Impact of quality of Bayesian network parameters on accuracy of medical diagnostic systems.. In Working Notes of the Workshop on Probabilistic Problem Solving in BioMedicine (ProBioMed'11), in conjunction with the Thirteenth Conference on Artificial Intelligence in Medicine (AIME-2011), pages 135-148, Bled, Slovenia, 2 July 2011.
  • Marek J. Druzdzel and Roger R. Flynn. Decision Support Systems. In Encyclopedia of Library and Information Science, Third Edition, Marcia J. Bates and Mary Niles Maack (eds.), Taylor & Francis, Inc., New York, 16 February 2010.
  • John Mark Agosta, Russell Almond, Dennis Buede, Marek J. Druzdzel, Judy Goldsmith and Silja Renooij. Workshop summary: Seventh annual workshop on Bayes applications. In Proceedings of the 26th Annual International Conference on Machine Learning (ICML'09), page 3:1, Montreal, Quebec, Canada, 14-18 June 2009.
  • Mark Voortman, Denver H. Dash, Marek J. Druzdzel, Dean Pomerleau and Gustavo Sudre. Difference-based Causal Models: Bridging the gap between Granger causality and DCMs. In NIPS 2009 Workshop on Connectivity Inference in Neuroimaging (CINI 2009), Whistler, B.C., Canada, December 12th, 2009.
  • Marek J. Druzdzel. Rapid modeling and analysis with QGeNIe. In Proceedings of the International Multiconference on Computer Science and Information Technology (IMCSIT-2009), pages 101-108, Mragowo, Poland, October 12-14, 2009.
  • Parot Ratnapinda and Marek J. Druzdzel. Passive construction of diagnostic decision models: An empirical evaluation. In Proceedings of the International Multiconference on Computer Science and Information Technology (IMCSIT-2009), pages 515-521, Mragowo, Poland, October 12-14, 2009.
  • Marek J. Druzdzel. The role of assumptions in causal discovery. In Proceedings of the 8th Workshop on Uncertainty Processing (WUPES-09), pages 57-68, Liblice, Czech Republic, September 19-23, 2009.
  • Martijn de Jongh and Marek J. Druzdzel. A comparison of structural distance measures for causal Bayesian network models. In Recent Advances in Intelligent Information Systems, Challenging Problems of Science, Computer Science series, Mieczyslaw Klopotek, Adam Przepiorkowski, Slawomir T. Wierzchon, Krzysztof Trojanowski (eds.), pages 443-456, Warsaw: Academic Publishing House EXIT, 2009.
  • F. Javier Diez and Marek J. Druzdzel. Verbal expressions of probability. In Encyclopedia of Medical Decision Making, Kattan, M.W. (Ed.), pages 53-57, Thousand Oaks, CA: Sage Publications, 2009.
  • Agnieszka Onisko, Marek J. Druzdzel and Marshall Austin. Application of Dynamic Bayesian Networks to cervical cancer screening. In Proceedings of Artificial Intelligence Studies, Vol. 6(29), pages 5-14, Siedlce: Publishing House of the University of Podlasie, 2009.
  • Paul P. Maaskant and Marek J. Druzdzel. An ICI Model for opposing influences. In Proceedings of the Fourth European Workshop on Probabilistic Graphical Models (PGM-08), Manfred Jaeger & Thomas D. Nielsen (eds.), pages 185-192, Hirtshals, Denmark, September 17-19, 2008.
  • John M. Agosta and Thomas R. Gardos and Marek J. Druzdzel. Query-based diagnostics. In Proceedings of the Fourth European Workshop on Probabilistic Graphical Models (PGM-08), Manfred Jaeger & Thomas D. Nielsen (eds.), pages 1-8, Hirtshals, Denmark, September 17-19, 2008.
  • Marek J. Druzdzel and Agnieszka Onisko. The Impact of Overconfidence Bias on Practical Accuracy of Bayesian Network Models: An Empirical Study In Working Notes of the 2008 Bayesian Modelling Applications Workshop, Special Theme: How Biased Are Our Numbers?, Part of the Annual Conference on Uncertainty in Artificial Intelligence (UAI-2008), Helsinki, Finland, 9 July 2008.
  • Marek J. Druzdzel and Agnieszka Onisko. Are Bayesian Networks Sensitive to Precision of Their Parameters? In S.T. Wierzchon, M. Klopotek, and M. Michalewicz (eds.), Intelligent Information Systems XVI, Proceedings of the International IIS'08 Conference, pages 35-44, Academic Publishing House EXIT, Warsaw, Poland, June 2008.
  • Anna Lupinska-Dubicka and Marek J. Druzdzel. A dynamic Bayesian network model of womans monthly cycle. In Working notes of the 15th International PTSK (Polskie Towarzystwo Symulacji Komputerowej) Workshop, pages 227-231, Zakopane, Poland, 25-27 September 2008.
  • Katarzyna Kosciuk and Marek J. Druzdzel. Exploring opponent's weaknesses as an alternative to the Minimax strategy. In Working notes of the 15th International PTSK (Polskie Towarzystwo Symulacji Komputerowej) Workshop, pages 199-210, Zakopane, Poland, 25-27 September 2008.
  • Marek J. Druzdzel and Agnieszka Onisko. Methods for learning diagnostic and risk assessment models from data In 99th ICB Seminar, 7th International Seminar on Statistics and Clinical Practice, page 38, Polish Academy of Sciences, International Center for Biocybernetics, Warsaw, Poland, June 2008.
  • Martinus de Jongh, Marek J. Druzdzel, and Leon Rothkrantz. Implementing and Improving a Method for Non-Invasive Elicitation of Probabilities for Bayesian Networks. In Proceedings of the International Conference on Computer Systems and Technologies (CompSysTech07), pages VI.18.1-VI.18.7, Rousse, Bulgaria, 14-15 June 2007
  • Anna Lupinska-Dubicka and Marek J. Druzdzel. Temporal Aspects of Netflix Data. In Working notes of the 14th International PTSK (Polskie Towarzystwo Symulacji Komputerowej) Workshop. pages 237-244, Krynica Zdroj, Poland, 26-29 September 2007
  • Adam Zagorecki and Marek J. Druzdzel. Probabilistic independence of causal influences. In Proceedings of the Third European Workshop on Probabilistic Graphical Models (PGM-06), pages 325-332, Milan Studeny and Jiri Vomlel (eds.), Prague: Action M Agency, 2006.
  • Changhe Yuan and Marek J. Druzdzel. Hybrid loopy belief propagation. In Proceedings of the Third European Workshop on Probabilistic Graphical Models (PGM-06), pages 317-324, Milan Studeny and Jiri Vomlel (eds.), Prague: Action M Agency, 2006.
  • Xiao Xun Sun, Marek J. Druzdzel and Changhe Yuan. Dynamic weighting A* search-based MAP algorithm for Bayesian networks. In Proceedings of the Third European Workshop on Probabilistic Graphical Models (PGM-06), pages 279-286, Milan Studeny and Jiri Vomlel (eds.), Prague: Action M Agency, 2006.
  • Pieter Kraaijeveld and Marek J. Druzdzel. GeNIeRate: An interactive generator of diagnostic Bayesian network models. In Working Notes of the 16th International Workshop on Principles of Diagnosis (DX-05), pages 175-180, Monterey, CA, USA, June 1-3, 2005.
  • Tsai-Ching Lu and Marek J. Druzdzel. Mechanism-based causal models for adaptive decision support. In Challenges to Decision Support in a Changing World, Papers from the 2005 AAAI Spring Symposium, Marek J. Druzdzel and Tze-Yun Leong (eds.), Technical Report SS-05-02, pages 73-79, Menlo Park, CA: AAAI Press, 2005.
  • Marek J. Druzdzel and Tze-Yun Leong (eds). Challenges to Decision Support in a Changing World, Papers from 2005 AAAI Spring Symposium. AAAI Technical Report SS-05-02, 136 pp., ISBN 1-57735-228-9, March 2005.
  • Changhe Yuan and Marek J. Druzdzel. A comparison on the effectiveness of two heuristics for importance sampling. In Proceedings of the Second European Workshop on Probabilistic Graphical Models (PGM-04), pages 225-232, Leiden, The Netherlands, October 2004.
  • Danier Garcia-Sanchez and Marek J. Druzdzel. An efficient sampling algorithm for influence diagrams. In Proceedings of the Second European Workshop on Probabilistic Graphical Models (PGM-04), pages 97-104, Leiden, The Netherlands, October 2004. Reprinted in Advances in Probabilistic Graphical Models, Studies in Fuzziness and Soft Computing Series, Springer, 213:255-273, 2007. PDF
  • F. Javier Diez, Marek J. Druzdzel and Miguel A. Hernan. Causal diagrams to represent biases in the evaluation of diagnostic procedures. In Proceedings of the 36th Annual Meeting of the Society for Epidemiologic Research (SER-03), Atlanta, GA, 2003.
  • F. Javier Diez and Marek J. Druzdzel. Reasoning Under Uncertainty. In Encyclopedia of Cognitive Science, pages 880-886, Nadel, L. (Ed.), London: Nature Publishing Group, 2003.
  • Agnieszka Onisko and Marek J. Druzdzel. Effect of imprecision in probabilities on the quality of results in Bayesian networks: An empirical study. In Working Notes of the European Conference on Artificial Intelligence in Medicine (AIME-03) Workshop on Qualitative and Model-based Reasoning in Biomedicine, pages 45-49, Protaras, Cyprus, 19 October 2003.
  • Tsai-Ching Lu and Marek J. Druzdzel. Causal models, value of intervention, and search for opportunities. In Proceeding of the First European Workshop on Probabilistic Graphical Models (PGM-02), pages 108-116, Cuenca, Spain, 6-8 November 2002.
  • Hanna Wasyluk, Agnieszka Onisko and Marek J. Druzdzel. Application of a computer-based diagnostic tool to training general practitioners. In Fifth International Seminar on Statistics and Clinical Practice (68-th Seminar of the International Centre of Biocybernetics), Warsaw, Poland, 3-5 June 2002.
  • Agnieszka Onisko, Marek J. Druzdzel and Hanna Wasyluk. An experimental comparison of methods for handling incomplete data in learning parameters of Bayesian networks. In Intelligent Information Systems 2002: Proceedings of the IIS'2002 Symposium, M. Klopotek, S.T. Wierzchon, M. Michalewicz (eds.), pages 351-360, Advances in Soft Computing Series, Physica-Verlag (A Springer-Verlag Company), Heidelberg, 2002.
  • Agnieszka Onisko, Marek J. Druzdzel and Hanna Wasyluk. Learning Bayesian network parameters from data using Noisy-OR gates (in Polish). In Badania operacyjne i systemowe wobec wyzwan XXI wieku, Zdzislaw Bubnicki, Olgierd Hryniewicz, Roman Kulikowski (eds.), Problemy wspolczesnej nauki. Teoria i zastosowania series, pages IV:19-26, Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2002.
  • F. Javier Diez and Marek J. Druzdzel. Fundamentals of canonical models. In Ponencia Congreso: IX Conferencia de la Asociacion Espanola para la Inteligencia Artificial (CAEPIA-TTIA 2001), pages 1125-1134, Gijon, Spain, 2001.
  • Agnieszka Onisko, Leon Bobrowski, Marek J. Druzdzel and Hanna Wasyluk. HEPAR and HEPAR II - computer systems supporting a diagnosis of liver disorders. In Proceedings of the Twelfth Conference on Biocybernetics and Biomedical Engineering, Warsaw, Poland, November 28-30, 2001 (Best Young Investigator Paper award for Ms. Onisko).
  • Marek J. Druzdzel and Roger R. Flynn. Decision Support Systems. In Encyclopedia of Library and Information Science, Vol. 67, Suppl. 30, pages 120-133, Allen Kent (ed.), Marcel Dekker, Inc., New York, 2000.
  • Agnieszka Onisko, Marek J. Druzdzel and Hanna Wasyluk. Learning Bayesian network parameters from small data sets: Application of Noisy-OR gates. In Working Notes of the Workshop on Bayesian and Causal Networks: From Inference to Data Mining, 12th European Conference on Artificial Intelligence (ECAI-2000), Berlin, Germany, 22 August 2000.
  • Marek J. Druzdzel and F. Javier Diez. Criteria for combining knowledge from different sources in probabilistic models. In Working Notes of the workshop on `Fusion of Domain Knowledge with Data for Decision Support,' Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-2000), pages 23-29, Stanford, CA, 30 June 2000.
  • Agnieszka Onisko, Marek J. Druzdzel and Hanna Wasyluk. Extension of the Hepar II model to multiple-disorder diagnosis. In Intelligent Information Systems, M. Klopotek, M. Michalewicz, S.T. Wierzchon (eds.), pages 303-313, Advances in Soft Computing Series, Physica-Verlag (A Springer-Verlag Company), Heidelberg, 2000.
  • Agnieszka Onisko, Marek J. Druzdzel and Hanna Wasyluk. A Bayesian network model for diagnosis of liver disorders. In Proceedings of the Eleventh Conference on Biocybernetics and Biomedical Engineering, pages 842-846, Warsaw, Poland, December 2-4, 1999.
  • Marek J. Druzdzel and Clark Glymour. Causal inferences from databases: Why universities lose students. In Clark Glymour and Gregory F. Cooper (eds), Computation, Causation, and Discovery, Chapter 19, pages 521-539, AAAI Press, Menlo Park, CA, 1999.
  • Denver H. Dash and Marek J. Druzdzel. Problems related to causal reasoning in equilibrium models. In Proceedings of the Conference on Theoretical Informatics: Methods of Analysis of Incomplete and Distributed Information, pages 24-26, Bialystok, Poland, 26-28 November 1999.
  • Denver H. Dash and Marek J. Druzdzel. A fundamental inconsistency between equilibrium causal discovery and causal reasoning formalisms. In Working Notes of the Workshop on Conditional Independence Structures and Graphical Models, pages 17-18, Fields Institute, Toronto, Canada, 27 September - 1 October 1999.
  • Marek J. Druzdzel. ESP: A mixed initiative decision-theoretic decision modeling system. In Working Notes of the AAAI-99 Workshop on Mixed-initiative Intelligence, pages 99-106, Orlando, Florida, 18 July 1999.
  • Yan Lin and Marek J. Druzdzel. Stochastic sampling and search in belief updating algorithms for very large Bayesian networks. In Working notes of the AAAI-1999 Spring Symposium on Search Techniques for Problem Solving Under Uncertainty and Incomplete Information, pages 77-82, Stanford, CA, March 22-24, 1999.
  • Agnieszka Onisko, Marek J. Druzdzel and Hanna Wasyluk. Graphical probabilistic models in diagnosis of liver disorders. In Working notes of the Third International Seminar on Statistics and Clinical Practice (45th Seminar of the International Centre of Biocybernetics), Warsaw, Poland, June 24-27, 1998.
  • Agnieszka Onisko, Marek J. Druzdzel and Hanna Wasyluk. A probabilistic causal model for diagnosis of liver disorders. In Proceedings of the Seventh Symposium on Intelligent Information Systems (IIS-98), pages 379-387, Malbork, Poland, June 15-19, 1998.
  • Marek J. Druzdzel, Tsai-Ching Lu and Tze-Yun Leong. Interactive construction of decision models based on causal mechanisms. In Working notes of the AAAI 1998 Spring Symposium on Interactive and Mixed-Initiative Decision-Theoretic Systems, pages 38-44, Stanford, CA, March 23-25, 1998.
  • Hans van Leijen and Marek J. Druzdzel. Reversible causal mechanisms in Bayesian networks. In Working notes of the AAAI 1998 Spring Symposium on Prospects for a Commonsense Theory of Causation, pages 24-30, Stanford, CA, March 23-25, 1998.
  • Agnieszka Onisko, Marek J. Druzdzel and Hanna Wasyluk. Application of Bayesian belief networks to diagnosis of liver disorders. In Proceedings of the Third Conference on Neural Networks and Their Applications, pages 730-736, Kule, Poland, October 14-18, 1997.
  • Marek J. Druzdzel. An incompatibility between preferential ordering and the decision-theoretic notion of utility. In Working notes of the AAAI 1997 Spring Symposium on Qualitative Preferences in Deliberation and Practical Reasoning, pages 35-40, Stanford, CA, March 23-25, 1997.
  • Marek J. Druzdzel. Technology use in computer programming courses. In Second Annual University of Pittsburgh Teaching Excellence Conference: Technology in Teaching, Pittsburgh, PA, March 29, 1996.
  • Marek J. Druzdzel and Clark Glymour. Having the right tool: Causal graphs in teaching research design. In What Works in University Teaching: University of Pittsburgh Teaching Excellence Conference, Pittsburgh, PA, March 31 - April 1, 1995.
  • Marek J. Druzdzel. Getting the message across to students: Multimedia syllabi. In What Works in University Teaching: University of Pittsburgh Teaching Excellence Conference, Pittsburgh, PA, March 31 - April 1, 1995. Reprinted in Instructional Guide for University Faculty, Mary Samardzija, editor, Faculty Development and Instructional Design Center, Northern Illinois University, Dekalb, IL, 1999.
  • Marek J. Druzdzel and Henri J. Suermondt. Relevance in probabilistic models: "backyards" in a "small world." In Working notes of the AAAI-1994 Fall Symposium Series: Relevance, pages 60-63, New Orleans, LA, November 4-6, 1994.
  • Marek J. Druzdzel and Clark Glymour. Application of the TETRAD II program to the study of student retention in U.S. colleges. In Working notes of the AAAI-94 Workshop on Knowledge Discovery in Databases (KDD-94), pages 419-430, Seatle, WA, July 1994.
  • Marek J. Druzdzel and Max Henrion. Belief propagation in qualitative probabilistic networks. In Qualitative Reasoning and Decision Technologies, N. Piera Carrete & M.G. Singh (eds), pp. 451-460, CIMNE: Barcelona, 1993.
  • Marek J. Druzdzel and Max Henrion. Using scenarios to explain probabilistic inference. In Working notes of the AAAI-90 Workshop on Explanation, pages 133-141, Boston, MA, July 1990. American Association for Artificial Intelligence.
  • Max Henrion and Marek J. Druzdzel. Qualitative and linguistic explanation of probabilistic reasoning in belief networks. In Proceedings of the Third International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), pages 225-227, Paris, France, July 1990.
  • Invited papers:

  • Marek J. Druzdzel. Explanation in probabilistic systems: Is it feasible? Will it work? In Proceedings of the Fifth International Workshop on Intelligent Information Systems (WIS-96), Deblin, Poland, June 2-5, 1996.
  • Marek J. Druzdzel and Clark Glymour. What do college ranking data tell us about student retention: Causal discovery in action. In Proceedings of the Fourth International Workshop on Intelligent Information Systems (WIS-95), pages 138-147, Augustow, Poland, June 5-9, 1995.
  • Marek J. Druzdzel. Discussion of Moises Goldszmidt's "Belief-based irrelevance and networks: Toward faster algorithms for prediction." In Working notes of the AAAI-1994 Fall Symposium Series: Relevance, page 100, New Orleans, LA, November 4-6, 1994.
  • Marek J. Druzdzel. Some useful properties of probabilistic knowledge representations from the point of view of intelligent systems. In Proceedings of the Third International Workshop on Intelligent Information Systems (WIS-94), pages 278-292, Wigry, Poland, June 4-11, 1994.
  • Limited circulation:

  • Marek J. Druzdzel, Agnieszka Onisko, Daniel Schwartz, John N. Dowling and Hanna Wasyluk. Knowledge engineering for very large decision-analytic medical models. Research Report CBMI-99-26, Center for Biomedical Informatics, University of Pittsburgh, September 1999 (full version of a short paper presented at AMIA-99).
  • Agnieszka Onisko, Marek J. Druzdzel and Hanna Wasyluk. A Bayesian network model for diagnosis of liver disorders. Research Report CBMI-99-27, Center for Biomedical Informatics, University of Pittsburgh, September 1999.
  • Marek J. Druzdzel. Probabilistic Reasoning in Decision Support Systems: From Computation to Common Sense. Ph.D. Dissertation, Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, January 1993.
  • Marek J. Druzdzel. Scenario-based explanations for Bayesian decision support systems. Technical Report CMU-EPP-1990-03-04, Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, January 1990.
  • Marek J. Druzdzel. Towards process models of judgment under uncertainty. Technical Report CMU-EPP-1990-03-03, Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, October 1989.
  • Marek J. Druzdzel. Verbal uncertainty expressions: Literature review. Technical Report CMU-EPP-1990-03-02, Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, May 1989.
  • Marek J. Druzdzel. Current Trends in Computer Architecture and Their Relation to the LISP Programming Language. M.S. Thesis, Reprinted as Technical Report 1-68340-28 (1987)02, Department of Electrical Engineering, Technische Universiteit Delft, Delft, The Netherlands, February 1987.
  • Marek J. Druzdzel. Implementation of the Memory Management Module of the UNIX System V Kernel on a MC68010 Based Single Board Computer. Unpublished M.S. Thesis, Department of Mathematics and Computer Science, Technische Universiteit Delft, Delft, The Netherlands, November 1985.
  • BibTex file for the above papers


    HOME marek@sis.pitt.edu / Last update: 7 January 2019